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Introduction

The variety of disciplines that were accommodated by the 36 Spacelab flights logically
group into 3 distinct categories; 1. External Observations in which the Shuttle/Spacelab is
used as an observing platform, 2. Microgravity Sciences that make use of the
microgravity environment to further the studies of Fluid Physics, Combustion Science,
Materials Science, and Biotechnology, and 3. Life Sciences that studies the response and
adaptability of living organisms to the microgravity environment. Because of the bulk of
the material involved and the diverse interests, the report has been divided into three
volumes with the previously mentioned titles. This volume deals with Microgravity
Science as defined above.

The purpose of this Spacelab Science Results Study is to document the contributions
made in each of the major research areas by giving a brief synopsis of the experiments
and an extensive lisgof the publications that were produced by each Investigator team.
We have also endeavored to show how these results impacted the existing body of
knowledge, where they have spawned new fields, and, if appropriate, where the
knowledge they produced has been applied. Since a new generation of young researchers
will make up the cadre of Investigators that utilize the International Space Station (ISS),
We feel it is important to leave a legacy of the results, some positive , some negative, of
the previous experiments that have been performed. Hopefully, the new generation will
built on the successes and learn from the failures of the past.

The material used in study came from many sources including the Mission Summary
Reports, Mission and/or Investigator Team WEB sites, the International Distributed
Experiments Archives (IDEA, which contains both the NASA Microgravity Research
Experiments (MICREX) database and the ESA Microgravity Database), the
Compendex*Web, the Science Citation Index, various survey papers, conference
proceedings, and the open literature publications of the Investigators. Unfortunately, the
MICREX database, which had been an excellent source of information for microgravity
flight experiments, has not been maintained since USML-1, so it is only useful up to that
point.

The bibliography is rather extensive and includes papers generated by the various
investigators during the course of the development of their experiment as well as the
results and applications of their results. There is, perhaps, a lack of uniformity in the
number of documents listed since some Investigators left a much more extensive



document trail than others. Also, several of the Investigators had spent a good fraction of
their carrier in the development of their experiments. Even though this study was
restricted to the experiments actually performed on Spacelab missions, in several cases
experiments performed on suborbital rockets or on non-Spacelab Shuttle flights went in
to the development of the Spacelab experiment. Therefore, the results from these flight
were also included in the bibliography.

The number of publications generated by this program is quite impressive as summarized
in the table below.

Total Publications Journal Articles
Fluids and Combustion 681 378
Materials Science 999 461
Biotechnology 598 360
Total 2278 1199

We regret that time and resources did not permit iteration with the Investigators, as
Wewould have liked to do. So if a result is misinterpreted or if references were missed,
We apologize. We tried to include every microgravity experiment that was flown on a
Spacelab mission, but invariably, when dealing with this many experiments in a limited
time, an important experiment or result is bound to missed. Again, We apologize to the
Investigators I may have slighted. >
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Fluids and Combustion in Microgravity

The study of the behavior of fluids in microgravity is fundamental to the understanding
of virtually all other microgravity science since the suppression of fluid flows resulting
from buoyancy effects is the primary reason for most microgravity experiments. (The
exceptions being cases in materials science where the hydrostatic head may cause
deformations in extremely weak solids or in the life sciences where there is evidence that
the unloading of the cytoskeleton may be responsible for altered cellular behavior.) Asa
result, many of the fluids experiments were aimed at providing information to support the
materials science experiments. One of the striking features in much of the research on
the behavior of liquids in space is the importance of capillary or interfacial phenomena
after buoyancy effects are essentially removed. Clearly these phenomena are present in
normal gravity, but are often neglected because their effects are often masked by
buoyancy-driven flows. The ability to uncouple gravity effects from non-gravitational
effects, so that the latter can be studied in more detail, has been one of the primary
justifications for the study of fluid phenomena in microgravity.

Gravity has a profound effect on the behavior of fluid systems undergoing second-order
phase transformations as the compressibility vanishes. Consequently, the microgravity
environment has been used to advantage to perform critical tests of fundamental theories
dealing with the universality of material behavior near a critical phase transition.

Combustion experiments in microgravity are a special case of fluid experiments in which
chemical reaction must be included. However, the motivation for performing this class
of experiments in space is basically the same; the need to separate gravity-related from
non-gravity related effects and to use the simplifications obtained by effectively
eliminating convective transport in order to gain a better understanding of the basic
principles involved. It is also important to understand combustion in the virtual absence
of gravity to develop design criteria and emergency procedures for dealing with fire
safety in the operation of manned laboratories in space.

Capillarity Effects on Liquid Configurations

In dealing with partially filled containers in low gravity, it is important to be able to
predict where the liquid will be. Generally this will be determined by the geometry of the
container and the contact angle between the liquid and the container wall. The Young-
Laplace-Gauss equation can then, in principle, be solved to give the minimum surface.
One of the difficulties with the theory is that a friction is involved in moving the contact
line. As a result, the contact angle depends on whether the contact line is advancing or
receding, giving rise to a phenomena known as contact angle hysteresis. Several
experiments were carried out to see how well such systems could be modeled.

For example, on Spacelab 1, Haynes (University of Bristol) recorded the spreading of a
tethered drop of silicone oil when it touched another clean aluminum plate. Here, the
aim was to understand the dynamics of an advancing contact line.



In another experiment on SL-1, Padday (Eastman Kodak Ltd,. UK) established silicone
oil floating zones between two axisymmetric plates of unequal sizes. Using the Young-
Laplace —Guass equation to calculate the pressure from the configuration of the zone, he
was able to measure the disjoining pressure (the pressure that must be applied to remove
the film) in the film that spread over the larger plate. Padday likened his directing the
Payload Special to do his experiment and having to rely on his surrogate to describe what
was happening to the way the pioneering Belgian physicist, Plateau, had to operate more
than a hundred years ago when he did similar experiments using neutrally buoyant
immiscible fluids. Plateau was blind.

Padday repeated the experiment on D-1 to study the effects of rotation and vibration on
the zone shape. Both monorotation (rotation of cone plate only) and isorotation (rotation
of both end plates) did not visibly change the zone shape contrary to theoretical
calculations based on the Laplace equation. Induced axial vibration did not induce
harmonic wave movement and apparently increased the stability of the zone. The rupture
of the liquid zones was also analyzed during these experiments. The rupture occurred
rapidly at two places in the thin column. The column becomes a satellite drop and the
liquid at end plates relaxes to spherical drop shape. The satellite drop rebounded between
liquid/air surfaces, but did not penetrating these surfaces.

Vreeburg (National Aerospace Laboratory, Amsterdam) investigated the behavior of
silicone oil in a partially filled plastic cylinder as it was spun up and spun down on
Spacelab 1. The objective was to test the ability to model the behavior of propellants in a
partially filled tanks in low gravity. He conducted a similar experiment on the D-1 flight
using doubly distilled water in a plastic cylinder to investigate the effects of vibration and
the movement of the contact line. He was able to predict the resonant frequencies with
reasonable accuracy, but the behavior of the contact line presented some difficulty. At
first glance, it appeared that the contact line had stuck. However, closer analysis revealed
that the contact line did move a small amount and that the oscillating contact angle
exhibited some hysteresis.

A tribology experiment was carried out on Spacelab-1 by Pan (Columbia University)
with Gause and Whitaker (NASA/MSFC). Drops of oil were deposited on stainless steel
surfaces with various surface treatments and finishes and the rate of spreading was
recorded. In a second part of the experiment, the configuration of the oil film in a journal
bearing was investigated. In the normal function of a journal bearing, the clearance space
is only partly filled with lubricant and gravity drainage positions the lubricating film so
that shear forces can move the lubricant to the region where it is needed. The
investigators wanted to know such a bearing would operate in the absence of gravity
drainage with and without a load.

Concus (Lawrence Berkeley Laboratory), Finn (Stanford U.) and Weislogel (NASA
Glenn Research Center) came up with a design of a container that admitted a continuum
of possible rotationally symmetric configurations for a given fill fraction and contact
angle, but none of the configurations were stable. They presented an interesting
question, how would nature select an equilibrium configuration? They found the answer



using the glovebox on USML-1. No one told Mother Nature that the configuration had to
be rotationally symmetric, so she simply selected a nonsymmetric configuration. Again,
the effect of contact line sticking and contact angle hysteresis were noted when the
Payload Specialist was trying to coax the fluid into its equilibrium shape. The small
residual gravity may also have played a role in determining the shape of the liquid.

It can be shown theoretically that a liquid will penetrate into a wedge if the contact angle
¥ <Y, = /2 — 0, where o is the half-angle of the wedge. Langbein (ZARM, U. Bremen)
fabricated test cells from quartz plates with rhombic cross sections at different half-
angles. These were partially filled with an index matching fluid after the walls were
coated with FC-724 to provide the desired range of contact angles. The contact angle
was changed by heating the test cells in the bubble, drop, and particle, unit (BDPU) on
IML-2. Langbein expected to see the liquid rise in the wedge-shaped corners of the test
cells when the contact angle became less than the critical value ¥,. However, the
resulting surfaces did not match the computed surfaces, and even though the contact
angle became less than the critical value, wetting was not observed. He attributed this
behavior to contact line friction which caused the volume change during heating and
cooling to be accommodated by varying the contact angle rather than by moving the
contact line.

Concus and his team carried out a variation of Langbein’s experiments on USML-2.
They machined a shape they called a “canonical proboscis” along diametrical opposite
sides of an acrylic cylinder. The special shape has the property that for a given radius of
curvature, the contact angle remains constant as the liquid penetrates into the cavity. The
right and left shapes were chosen to accommodate different contact angles. Three such
vessels were constructed; one in which the right and left contact angles were subcritical,
one in which the right and left contact angles included the critical angle, and one in which
both contact angles were supercritical. It was anticipated that the liquid would rise
slightly higher in the side closer to the critical contact angle for the subcritical cell, that
the liquid would rise in the supercritical side at the expense of the subcritical side in the
intermediate cell, and the liquid would rise in both sides of the supercritical cell. This is
essentially what was observed, except that the liquid did not rise spontaneously in any of
the cases because of contact line friction. Only after considerable mechanical tapping
and coaxing by the Payload Specialist were these results achieved. Observation of the
supercritical cell after 7 days indicated that the liquid had continued to creep along the
walls, but at a very slow rate. A wedge-shaped container with a variable wedge angle
was also used in this series of experiments. Here the liquid in the wedge rose rapidly as
the wedge angle reached the critical value.

Zone shape and stability

Microgravity offers the possibility to conduct experiments with free liquid surfaces on a
scale not possible on Earth. One process of interest to materials scientists is the use of a
floating zone for crystal growth. A molten zone is created in a rod of feed material and is
traversed along the rod. New feed material enters the advancing zone and a single crystal
can be grown at the receding interface. Of primary interest is the stability of such zones .



Lord Rayleigh (see Proc. Royal Soc. 29 (1879) 71) showed that a cylindrical liquid
column would become unstable and break if the length exceeded the circumference. But
what happens if the zone is not cylindrical? Or if it is rotated, which is sometimes done
to even out asymmetries in heating? Or vibrated by mechanical disturbances in the
spacecraft? Many of these questions had been approached theoretically and
experimentally using a Plateau tank. But they had never actually tested in an actual
microgravity situation. As was discovered when an unexpected “jump rope” or C-mode
instability showed up in a simple rotating liquid zone experiment on Skylab, the presence
of a neutral buoyant solution in a Plateau tank is a different boundary condition, which
can often change the result of an experiment.

Martinez and Meseguer (Universidad Politecnica de Madrid) compared computational
predictions of the stability of extended liquid columns of silicone oil under various
mechanical manipulations with observations during the SL-1, D-1, and on D-2 flights.
The liquid columns were suspended between two metal discs with a radius of 1.75 cm
and a 30-degree receding sharp edge to prevent liquid spreading. Cylindrical columns
with length/diameter ratios of 2.86 were established several times. This maximum length
is short of the Rayleigh limit of 3.14, but appeared to be bounded by the ambient noise
(g-jitter) during the mission. A long cylindrical column was subjected to vibrational
frequencies of 0.1, 0.3,0.7, 1.1, and 1.6 Hz. No movement of the liquid was observed for
0.1 Hz vibration. However, standing waves with 2, 3, 4,and 5 inner nodes were found for
the remaining frequencies, respectively. The number of nodes for the respective
frequency was successfully predicted by theory. Destabilization of the columns, caused
by rotation at increasing rates, occurred near the theoretical limit. When liquid bridges
were subjected to perturbations beyond the stability limits, they broke in two separate
drops. The relative volumes of these drops were predicted by theory. During one of the
runs, when subjected to 10 rpm of isorotation, the column broke in an amphora-shape
mode, as predicted.

Langbein (ZARM, Bremen, Germany) also investigated the resonances of vibrating
liquid columns using pressure sensors mounted on the endplates. This proved to be an
effective method for observing when resonance occurs. His results compared favorably
with ground tests in a Plateau tank and with theory he developed. An accidental
misalignment of one of the discs on one experiment caused the zone to spill, illustrating
the sensitivity of the zone stability to non-axisymmetric configurations.

Microgravity offers a unique opportunity for purifying glass by zone refining and then
making cylindrical preforms by a quasi-containerless process. A long zone (near the
Rayleigh limit) could be formed and allowed to cool below the working temperature in
the middle. This portion could then be clamped and the two molten zones extended to
the length of the sample. The critical issue becomes the stability limits of a solid
suspended on each end by a liquid zone while it is cooling. Using small lexan rods,
Naumann (University of Alabama in Huntsville) and Langbein investigated the stability
of this double floating zone configuration. If the two zones have equal volume and are
bulging, the float will remain centered. However, if the zone are extended, it switches to
an antisymmetric mode with a long, slim zone on one side and a short fat zone on the



other. Theory indicates that the presence of the solid between the two liquid zones
actually tend to stabilize the system and, for cylindrical zones of equal volume, it will
remain stable up to and slightly beyond the limit in which the total zone length equals the
circumference.

Using the glovebox on USML-1, Naumann also investigated the feasibility of pulling
optical fibers in low gravity using silicone oil with different viscosities as well as honey
as model materials. It turns out that it is much easier to pull long strand of viscous
liquids on Earth because gravity drainage stabilizes the strand against the Rayleigh
instability. Such strands broke almost immediately in microgravity, as predicted by
Rayleigh’s theory. (Rayleigh had attempted to test his calculations, without much
success, by observing the breakup of strands of treacle laid on waxed paper.)

The Rayliegh limit (L/D = x) for a cylindrical bridge is a consequence of surface tension
forces which tend to restore the bridge below the Rayliegh limit and tend to pinch-off the
bridge above the Rayliegh limit. However, these forces can be modified by the presence
of an electric field. Charging a liquid bridge produces a radial electric field, which makes
the bridge more unstable. Conversely, an axial field should stabilize the bridge. The
only present electrohydrodynamic theory governing such effects is the “leaky dielectric
theory developed by G. 1. Taylor (see Proc. Royal Soc. A291 (1966) 27-64) which has
remained largely untested.

Burcham, Sankaran, and Saville (Princeton U.) decided to test Taylor’s “leaky dielectric”
theory by applying strong axial electric fields to liquid bridges, extending them beyond
the Rayleigh limit, and then slowly relaxing the field to find the point where the
cylindrical shape transitioned to the amphora (vase-like) mode occurred and the point
where the bridge would eventually break. Their interest lay in obtaining a reliable, well-
tested theory to guide in the development of miniature fluidics systems that utilize
electrodynamic forces for pumping and manipulating fluids to carryout chemical
reactions on a microchip.

Two dimensionless parameters control the stability of the electrodynamic stabilized
liquid bridge, the L/D ratio, and a A parameter which measures the electrodynamic
stabilizing force to the surface tension destabilizing force. Runs were made with a
neutrally buoyant 2-phase system (castor oil in 12,500 St. silicone oil) for comparison
with laboratory experiments in a Plateau tank. A single phase bridge (castor oil doped to
10 times the conductivity of neat oil) was extended to L/D = 4.32 and became cylindrical
with a A = 0.95. An unexpected result was the transition from the cylindrical to the
amphora shape occurred at different values of A, depending on whether the field is
increasing or decreasing. Also, according to theory, it shouldn’t matter if the applied
field is AC or DC, as long as the frequency is above the free charge relaxation time.
They were not able to stabilize the bridge with an AC field. As is often the case, a good
experiment asks more questions than it answers, and this experiment seems to be no
exception. The Investigators are now sorting out which aspects of Taylor’s theory are
correct and what parts need improvement.



Marangoni Convection

The atoms or molecule at the surface of any solid or liquid cannot form as many bonds as
those in the interior simply because they have fewer nearest neighbors. This give rise to
an excess surface energy (i.e., the atoms or molecules on the surface have less negative
energy than the more tightly bound atoms or molecules in the interior). If the surface is
deformable, as in the case of a liquid, it will take a shape which minimizes the surface
area in order to lower its energy. Furthermore, work is required to create new surface.
This work is the product of the force that must be applied times the distance it must act,
so the surface energy per area is equivalent to the force per distance or surface tension.

The surface tension is a function of temperature as well as composition. Therefore, if
there is a variation of either temperature or composition along a free surface of a liquid,
there will be an unbalanced force that can drive flows along the surface. These flows are
usually called Marangoni flows after the Italian who studied these phenomena. (The “no-
slip” boundary conditions at a solid-liquid interface suppress the surface flows.

Therefore it is generally accepted that Marangoni convection only occurs in the presence
of free surfaces.) Microgravity dramatically reduces buoyancy-driven convection, but
microgravity experimenters must still contend with Marangoni convection. On Earth,
buoyancy-driven flows compete with or add to Marangoni flows, so space provides an
excellent place to study Marangoni flows without this interference.

Microgravity offers the possibility to conduct experiments with free liquid surfaces on a
scale not possible on Earth. For example, floating zone crystal growth is possible in
space for systems whose surface tension is not able to support the zone in a gravity field.
Also the zone can be extended in space which allows better control of the thermal
gradient and the interface shape. However, temperature gradients along molten zone can
cause convective flows in the melt. This prompted a number of fluid experiments to
quantify the effect of these convective flows.

From a fluids point of view, it is more convenient to study the flows in the floating zone
process in a half-zone. The process is simulated by deploying the liquid column between
two metal discs that are maintained at different temperatures. On SL-1 Napolitano,
Monti, and Russo (University of Naples) applied temperature differences between
columns of silicone oil and measured the flows and heat transport induced by Marangoni
convection for comparison against numerical computations. A second experiment on D-
1 used a concave cold disc and a radial temperature distribution on the hot to simulate the
interface shape in a floating zone crystal growth experiment. The results were similar to
those obtained on SL-1. Experiments were also carried out with a two liquid zone by
adding dioctyl-phthalate to the silicone oil. Upon heating, the one of the liquids went
into the center of the zone, forming a drop.

When growing crystals by the floating zone process, it is often desirable to have the melt
in the zone well mixed. Therefore, some convection can be helpful. What needs to be
avoided is unsteady or time-dependent convection which can result as the Marangoni
flows get stronger. When this occurs, thermal and compositional fluctuations at the



growth interface produce unwanted growth defects called striations in the growing
crystal.

Chun (Pohang University, Korea) and Siekmann Universitat Essen, Germany)
investigated the transition from steady to unsteady flows in the half-zone configuration
on the D-2 mission. They found a critical Marangoni number (ratio of driving force to
viscous drag) that produced the lowest oscillating mode; one in which the flow pattern
becomes non-axisymmetric and rotates around the axis of the zone. At a higher
Marangoni numbers, the flow becomes turbulent or chaotic with no defined structure.

On D-2 Monti (University of Naples) with Carotenuto, Albanese, Castagnolo, and Ceglia
(MARS Center, Naples) noted that small scale half-zone experiments conducted in the
laboratory went into the unsteady oscillatory mode at lower Marangoni numbers than
some of the earlier flight experiments. They investigated the onset of unsteady flow as a
function of aspect ratio and diameter of the zone. They concluded that for a given
diameter, the critical Marangoni number increased with aspect ratio (length/diameter),
and for a given aspect ratio, it also increases with diameter.

One method that has been considered for controlling Marangoni convection in floating
zone crystal growth would coat the molten zone with an viscous immiscible liquid-phase
encapsulant such as B,0,. Some flow would still result but since the surface of the low
viscosity melt would have to drag the viscous encapsulant with it, the flow would be
damped to the point that unsteady convection would not result. Several attempts have
been made to model such a multi-layer configuration and Legros and Georis (Universite
Libre de Bruxells, Belgium) developed a 2-dimensional experiment that was flown on
IML-2 and on the LMS mission to test such models. They deployed a three layer fluid
system that consisted of a layer of 10 cSt silicone oil sandwiched between two layers of
higher viscosity Fluornet FC-70 oil which was contained on the top and bottom by
sapphire windows. A lateral thermal gradient was established and the flow was
visualized using marker particles and a laser light cut. The observed flows were
qualitatively similar to the expected behavior; the interfaces moved from hot to cold with
the return flow through the middle of each layer. However, the measured flows turned
out to be considerably larger than the computed flows. The reason for the discrepancy is
still being investigated. One possible reason is that the computations assumed constant
material properties, whereas the viscosities of the flows do change considerably with
temperature.

There is also considerable interest in Marangoni convection along horizontal surfaces.
Such flows are prevalent in combustion processes such as pool burning and may be seen
around the wick of a burning candle. Strong surface tension gradients occur in the
growth of silicon and other crystals by the Czochralski process in which the crystal is
pulled from a large heated pot of molten silicon. Such flows are usually unsteady and
may be turbulent. The resulting thermal fluctuations are the primary cause of the
striations seen in Czochralski-grown silicon.



During the D-1 mission, Schwabe, Lamprecht, and Scharmann (Universitat Giessen,
Germany) investigated Marangoni convection in a 20 x 20 x 20 mm cell with an open
surface sandwiched between two heating blocks. To avoid the problem of having to fill
the cell in space, they melted a block of tetracosane (paraffin) which served as their
working fluid. With one heater set at 60°C, they raised the temperature of the other
block. To their surprise, no flow was observed even after a AT of 55°C was established.
Finally, at a AT of 60°C, a strong flow developed. They concluded that the surface of
the tetracosane must have been contaminated with a substance that either lowered the
surface tension or resisted the surface stress until it finally broke through at a AT of 60°C.

The experiment was repeated using silicone oil on D-2, by Cramer, Metzger, Schwabe,
and Scharmann (Universitat Giessen). Care was taken to maintain a flat upper free fluid
interface at the beginning of the experiment. Flow was measured by observing tracer
particles illuminated by a vertical light cut. The temperature field was measured using
holography interferometry. A lower than expected temperature in the cooling loop
caused unexpected cooling at the top surface, which resulted in a more complicated three-
dimensional flow pattern. The formation of “tracer rings" was observed in which the
tracer particles tended to accumulate along streamlines that passed close to a free surface.

Enya (Ishikawajima-Harima Heavy Industries Ltd., Japan) was interested in Marangoni
convection in Bridgman crystal growth that might occur if the melt is not in contact with
the ampoule walls. He also chose paraffin as a model and saw no evidence of Marangoni
flows.

The surface tension of most fluids decreases with increasing temperature, but Limbourg-
Fontaine, and Petre (Universite Libre de Bruxells, Belgium) determined that an aqueous
solution of n-heptanol had a surface temperature minimum at 40°C. During the D-1
mission, they differentially heated this fluid ina 1 x 1 x 3 cm test cell so that surface
tension increased more-or-less symmetrically on either side of the center of the cell. A
small convective roll first developed near the hot wall, flowing from cool to hot, or from
lower to higher surface tension, as would be expected. However, instead of seeing a
counter-rotating flow on the cold side, the flow near the hot end expanded to fill the test
cell and eventually formed a second co-rotating cell near the cold end. The reason for
this unexpected behavior is still being investigated.

Ostrach, Kamotani,(Case Western Reserve University) and Pline (Glenn Research
Center, NASA) carried out an elaborate set of experiments on USML-1 and USML-2
aimed at determining the factors involved in the transition from steady to unsteady
surface tension-driven flows. Of particular interest was the role of surface deformation in
this transition. If surface deformation is unimportant, as some theories suggest, then it
should be possible to predict the onset of unsteady flows with a single parameter, the
critical Marangoni number. On the other hand if surface deformation does play a key
role in the transition, a surface deformation parameter will be required to completely
specify the conditions for the onset of unsteady flows. Thus it became necessary to
explore a wide range of parameters in order to establish the transition conditions.



Silicone oil was contained in a cylindrical test cell. A sharp pining edge confined the
height of the oil in the test cylinders so that different surface shapes could be obtained by
adjusting the filling. The oil could be spot heated at the center with a CO, laser, or
heated by an immersed heater. This feature allowed experiments to be conducted in
the constant temperature or the constant flux mode. Surface temperature was measured
with an imaging infrared radiometer. Marker particle s assisted flow visualization.

The test cell on USML-1 was 10 cm in diameter and 5 cm deep. The fluid was 10cSt
silicon oil. Very nice surface tension driven flows were observed, but no transition to
oscillating flows was observed within the operating range of the instrument. A series of
test cells with diameters 1.2, 2, to 3 cm were used for USML-2. The 10cSt oil was
replaced with 2cSt oil and a Ronchi interferometer was added for the USML-2
experiment to measure surface deformations.

A total of 55 tests were made with the 6 different size and heating configurations. Flows
in the smallest cells with the cartridge heater began oscillation at the same temperature
difference as their 1-g counterparts, indicating that buoyancy drive flows are not the
dominating factor for this size and smaller. The time-dependent flow exhibited a small
azimuthal oscillation superimposed on a slowly rotating flow about the thermal axis.
The thermal image indicated first a pulsating or rotating 2-lobe or 3-lobe pattern,
depending on the temperature difference and cell geometry. It was found that the
Marangoni number alone is not sufficient to characterize the onset of oscillatory flows,
but a critical value of a surface deformation parameter, which they defined, describes the
onset of oscillation in microgravity.

The previously described Marangoni convection experiments had variations in surface
tension along the fluid surface. In such experiments, convection should begin as soon as
there is an unbalanced force. In other words, there should be no threshold thermal
gradient required to start the flow, just as in the case of buoyancy-driven free convection
when the thermal gradient has a component perpendicular to the gravity vector.
However, in the famous Rayleigh-Benard problem, the g-vector is aligned with the
thermal gradient (cold over hot). Even though this is an unstable configuration, flows
will not develop until a critical value of the Rayleigh number is reached. The Rayleigh
number is a measure of the rate heat is being convected to the rate it is being conducted.
If the Rayleigh number is small, a displaced parcel of fluid can accommodate thermally
before it can rise very far, hence will settle back into place. If the Rayleigh number is
large, the fluid cannot be accommodated thermally and it will continue to rise, forming
circulating Benard cells. Rayleigh was able to predict the critical value of the Rayleigh
number corresponding to the onset of convective flows for different boundary conditions
at the top and bottom of the cell.

If the top surface is a free liquid boundary, the system is also subject to unstable
Marangoni convection (actually this problem was first studied by Pearson. (See J. R. A.
Pearson, J. Fluid Mech. 4 (1958) 489-500). The system can lower its energy by replacing
the cooler fluid with higher interfacial energy at the top surface with warmer fluid from



the interior that has lower interfacial energy. However, for this to happen, the Marangoni
number must exceed a critical value.

One can see immediately that the two types of convection will be in competition in a
gravity field. Therefore, it is necessary to eliminate gravity if one is to get an accurate
test of the surface tension effect. This experiment was first performed on Apollo
missions 14 and 17 during the return from the moon (see P. G. Grodzka and T. C.
Bannister, Science 176 (1972) 506-508, also Science, 187 (1975) 165-167) who
measured a somewhat higher value than the theoretical Marangoni number for the onset
of convection. It should be appreciated that this in not a trivial experiment to perform
accurately. The theory requires a flat interface and that the temperature gradient in the
sample be uniform. This latter condition requires a very carefully controlled heating
program.

Legros, Dupont, Queeckers, Petre (Universite Libre de Bruxells, Belgium) and Schwabe
(Universitat Giessen, Germany) essentially duplicated the Grodzka-Bannister experiment
on D-2 with better controls than were available on the Apollo spacecraft. They modified
the theory to account for non-equilibrium heating and varied the heating rate to
investigate the effect of non-equilibrium temperature profiles on the critical Marangoni
number. For a fast heat-up (14 times the heating rate to approach equilibrium heating),
they measured a critical Marangoni number of 95 against their calculated value of 101.
For a slower heat up (7 times the equilibrium heating rate) they measured a critical value
of 77 compared with their theoretical value of 82.4. Unfortunately, due to a technical
problem with the heater, they were unable to obtain an experimental value for the
equilibrium case.

Lichtenbelt, Drinkenburg, and Dijkstra (University of Groningen, the Netherlands)
investigated solutally-driven unstable Marangoni convection in a mixture of acetone and
water with a free surface on the D-1 mission. As the acetone evaporated from the
surface, the surface tension increases. Since the system can lower its energy by replacing
its higher interfacial energy surface layer with fluid richer in acetone from the interior,
the system is subject to a convective instability. At a critical Marangoni number, an
overturning flow will develop. This is a common situation in many industrial
applications such as distillation, adsorption, and desorption and is also an important
factor in the drying of paint, especially lacquers with a volatile solvent. A similar process
is responsible for “wine tears”, the tendency for drops to form above the surface of a
fortified wine or brandy. Lichtenbelt, et al. wanted to investigate the effects of the
surface tension without the gravitational interference. Quite unexpectedly, no
convection was seen in space as long as the fluid interface was kept flat. (This was done
by filling the cuvette to the anti-spread barrier.) Convective rolls did appear as some
fluid was drained out and the interface became more curved. It was speculated that either
the surface became contaminated or that the critical Marangoni number had not been
attained. A compositional gradient may have been established when the surface became
curved which drove a thresholdless flow.
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When a liquid contacts a solid, fluid dynamists usually assume a “no-slip” boundary
condition. It is commonly believed that contact of the fluid with the wall resists any
imbalance of interfacial forces, so that Marangoni convection need be considered only in
experiments that have free surfaces. Consequently, experimenter using closed fluid
systems such as the Bridgman configuration for directional solidification, generally
ignore the possibility of unwanted flows from Marangoni convection. There has been
some speculation about a second order Marangoni effect in which these unbalanced
forces can still drive very small flow in spite of the “no-slip” condition, but there has
been no direct experimental confirmation of such flows. However, it is well known that
Marangoni flows around bubbles in a liquid will drive bubbles toward decreasing
interfacial energy (usually toward the hotter regions of the liquid). What is not generally
appreciated is that these flows also stir the melt.

Using the glovebox on USML-1, Naumann (University of Alabama in Huntsville)
differentially heated a cylindrical cell containing Krytox 143AZ, a low viscosity
flurocarbon fluid. A 1 cm® void had been intentionally left when filling the chamber to
simulate the head space needed for thermal expansion. Since the fluid wet the container,
the void became a bubble, which migrated to the heated end of the test cell. There it
Jodged between the plug heater and one wall. Marker particles in the fluid revealed a
strong flow around the bubble which penetrated the entire test cell. The resulting flows
near the cold end, which would represent the forming solid in a directional solidification
experiment, were several orders of magnitude higher than the flows expected from
spacecraft residual accelerations. Flows such as this may explain some of the
unexpected mixing that was observed in the early Skylab and ASTP experiments.

A similar observation was made by Azuma (National Aerospace Laboratory, Japan) on
SL-J. In this case, secondary flows associated with a large bubble that had become
attached to the hot wall caused smaller bubbles to be brought into its vicinity and formed
a line along the thermal gradient.

Drop and Bubble Migration

Young, Goldstein, and Bloch (YGB)solved the Navier-Stokes equations for a spherical
drop or bubble in an infinite liquid with an imposed temperature gradient . Taking into
account the flows from the unbalanced interfacial forces, they showed that the droplet
would be propelled in the direction of decreasing interfacial tension(see J. Fluid Mech.6
(1959) 350). Since they did not have access to a microgravity environment, they tested
their theory by balancing the surface tension forces against buoyancy forces.

Nachle, Neuhaus, Siekmann, Wozniak (DLR, Koln) and Srulijes (U. Essen) tested the
YGB model in the absence of buoyancy forces on the D-1 mission by injecting bubbles
of air and drops of water into Wacker AK100 silicon oil. They confirmed the fact that
the bubbles remained spherical, which eliminated some speculation that the YGB model
may be in error because it didn’t account for possible distortion of the bubble under the
combined influence of surface tension stresses and Stokes drag. They found qualitative
agreement with the velocities predicted by the YGB theory for small Marangoni
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numbers, but the observed velocities became progressively lower than predicted for Ma
>1. The YGB model predicts that the velocity should be directly proportional to the
Marangoni number, but does not take into account convective thermal transport .
Therefore, it is only valid in the limit of vanishing Marangoni number and corrections are
required to the model for this effect. The droplets of water did not move at all. (It is a
well-known experimental fact that the Marangoni effect is virtually impossible to observe
in water because of trace quantities of surface active contaminants that tend to nullify the
driving force.)

Neuhaus and Feuerbacher (DLR, Koln) also tested the YGB model on the D-1 mission.
Bubbles were deployed in 3 different silicone oils (Wacker AK100, AS100, and AP100)
all of which had the same viscosities and thermal properties, but differed in the number of
phenol groups. A temperature gradient was established and the bubbles were monitored
holographically. The velocity of the bubbles in the AK100 oil with only 6% phenol
groups agreed reasonably with the YGB predictions. Bubbles in the AP100 oil with 28%
phenol groups did not move at all. Bubbles in the AS100 oil with a intermediate number
of phenol groups moved at 40% of the velocity predicted by the YGB theory. The
investigators suggested the additional of a “surface dilitational viscosity” term to the
YGB formulation to account for the resistance of the surface to deform.

Subramanian and his team at Clarkson University used the Bubble, Drop, and Particle
Unit (BDPU) on IML-2 to measure the velocity of air bubbles and Fluornet FC-75 drops
in S0cSt silicone oil under a thermal gradient. They also found that the scaled velocity
decreased with Marangoni number, as would be expected. Since the velocity of a drop or
bubble depends directly on the radius, larger drops would be expected to overtake and
engulf smaller drops. This effect is believed to be one of the mechanisms in the
agglomeration of minority phase droplets during the solidification of monotectic alloys.
However, Subramanian et al. observed an interesting effect in that a small drop leading a
large drop can slow the motion of the large drop. (Naehle et al. observed that when a
large drop leads a small drop, it still moves faster than the smaller drop, but the velocities
of both drops are lower than they would be as individual drops.) Subramanian et al.
speculated that a thermal wake behind the first drop reduces the driving force on the
second drop and designed an experiment on LMS to study this effect further. Here they
found that when two or three drops were injected into the chamber, the second and third
drops did not always follow a straight path across the chamber, as single drops did.
Instead, they followed a sinuous, helical path around their expected trajectory.
Sometimes a larger trailing drop would actually move around and pass the leading drop.

Viviani(Seconda Universita di Napoli) investigated the motion of bubbles in n-heptynol
which has a surface tension minimum at 40°C. Instead of stopping at the 40°C isotherm,
as was expected, the bubbles continued toward the cold wall, but did appear to slow
down as they approached the 10°C cold wall. On his LMS experiment, Viviani set the
cold wall temperature to 5°C,and the bubbles came to rest in the vicinity of the 8-10°C
isotherm. Why the statically measured surface tension is a minimum at 40°C, and the
apparent dynamic surface tension is a minimum at a lower temperature is still not
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understood. (Recall a similar anomaly was observed in Legros’ Marangoni convection
experiment with n-heptanol on D-1.)

Monti attempted to investigate the interaction of water droplets and air bubbles in
tetracosane (paraffin) with an advancing solidification front on IML-2, but encountered
technical difficulties. The experiment was completed successfully on the LMS mission.
One 0.9mm bubble was pushed by the front which was advancing at the rate of 1
micron/sec. Larger bubbles and water drops were engulfed. No motion of drops or
bubbles in the molten tetracosane from Marangoni effect was observed. (Recall that
Schwabe et al. observed no Marangoni flow in molten cosane in their Spacelab-1
experiment.)

Bewersdorff (DLR, Koln) attempted to observe bubble transport by chemical waves
using the HOLOP facility on D-1. As the chemical reaction spreads, the thermal gradients
generated by the heat of reaction can transport gaseous or liquid inclusions by the
Marangoni effect. The reaction of Zhabotinski was selected for wave generation and the
gas inclusions were to be generated from Zn particles. Unfortunately, problems with the
HOLOP prevented detailed recordings from which the migration of the bubbles were to
have been recorded.

Straub (LehrstuhlA fur Thermodynamik, Munchen) used the BDPU facility on IML-2 to
study evaporation and condensation kinetics by measuring bubble growth (evaporation)
and collapse (condensation) respectively in a supersaturated and supercooled liquid
(Freon R11) under isothermal conditions. Varying degrees of supersaturation were
obtained by varying the pressure in the container. The microgravity conditions permitted
the study of the process in a stationary bubble without the buoyancy disturbing the
temperature field in the vicinity of the bubble as the latent heat is absorbed or released.
This allowed the kinetics of the process to be worked out and the accommodation
coefficients to be determined. The results of this experiment were used to design the pool
boiling experiment that was developed for the LMS flight.

Heat Transfer in Microgravity

It is generally assumed that heat transport in boiling is largely the result of buoyancy
_driven convective flows. The bubbles that nucleate on the hot surface rise, carrying
their latent heat with them. Similarly, the hot liquid near the surface, being less dense,
will rise, causing overturning flows which carry heat away. The practice of cooling small
electronic devices by immersing them in a pool of dielectric liquid with appropriate vapor
pressure, such as Freon, was considered by many not to be feasible in space because it
was assumed that vapor would form around the device resulting in inefficient heat
transfer. However, Straub and co-workers proved otherwise on the LMS flight.

They immersed small heaters in the form of copper discs 1 to 3 mm in diameter in Freon
123 and measured the temperature and power in order to get the heat transfer coefficients
over a range of temperatures or heat fluxes. Surprisingly, they found that heat transfer in
microgravity was only slightly less efficient than it is in unit gravity. Thermocapillary
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jets were observed which appear to be an effective mode of heat transfer. These results
may cause the theories of boiling in normal gravity to be revisited and it may be possible
to design systems that take advantage of capillarity along with buoyancy to improve the
efficiency of boilers on Earth.

The Capillary Pumped Loop (CPL) was developed in the 1960’s at the NASA Lewis
Research Center (now the NASA Glenn Research Center) as a heat transfer device,
similar to a heat pipe. The technique works quite well in normal gravity, but its operation
in microgravity has been erratic. A transparent model of the device was fabricated and
flown on MSL-1R by Halliman (U. Dayton) and Allen (National Microgravity Research
Center, Cleveland) to gain insight into its operation without gravity with thew hope of
correcting the problem. It was found that in the absence of gravity drainage, liquid films
would form and accumulate in the vapor return lines. Eventually , Rayleigh instabilities
set in and liquid bridges form which obstruct the lines. In particular, these liquid slugs
tend to form in bends in the line. The result is diminished ability to transport heat.

Critical Point Phenomena

A number of peculiar things happen in the vicinity of a second order or critical phase
transition, such as takes place at the terminal point of the coexistence region between a
liquid and its vapor. As the critical point is approached, the densities of the liquid and
vapor become the same and the system fluctuates between the two states as though it
can’t make up its mind as to whether it wants to be a liquid or a vapor. These
fluctuations produce a kind of opalescence when the test cell is viewed. At the critical
point, the compressibility becomes infinite so that even the smallest temperature
difference can cause very strong convection. Many of the other thermodynamic
properties change dramatically near the critical point, e.g., the velocity of sound as well
as the thermal diffusivity goes to zero, while the heat capacity becomes infinite.

Other systems, such as a magnetic system neat the Curie point (the temperature at which
thermal motion becomes sufficient to destroy the magnetization) or the demixing of a
homogeneous liquid into two immiscible liquids at the critical consolute temperature,
exhibit similar behavior. The divergence of certain parameters near the critical point in
each of these systems show the same exponential behavior, thus leading to the theory of
universal behavior near a critical phase transition, regardless of the system. Ken Wilson
was awarded the Nobel Prize in 1982 for applying group renormalization theory to
determine the exponential behavior of these diverse systems near a critical point (see
K.G. Wilson, Phys. Rev. B 4 (1971) 3174).

On USMP-2 and -3 Gammon and his group at the University of Maryland used photon-
correlation light-scattering spectroscopy to measure the density fluctuations as the critical
point of xenon. They were able to record a number of photon correlation functions
processed in real time, from which they could measure the decay rate of the fluctuations.
The forward scatter intensity from the flight data showed a much sharper peak as the
critical temperature was crossed than the ground control. They were able to locate the
phase boundary to within +20 mK. The limiting factor in the experiment turned out to be
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unexpected window heating from the 17 microwatt laser which prevented them from
obtaining correlograms closer than 2 milli-K from the critical point.

On IML-1, Beysens (Commissariat a la Energie Atomique, Grenoble, France)was able to
show that the phase separation that occurs when a near-critical single component vapor
(SF,)is quenched into the liquid-vapor coexistence region belongs to the same universal
class as a two-component immiscible liquid system (methanol-cyclohexane) that is
quenched from above its consolute temperature into the two-liquid phase region. Since
gravity is also involved in phase separation, this could only be demonstrated in
microgravity. He also observed that the growth rate for small volume fractions of the
droplet phase in immiscible liquids followed either a 1/2 power law (diffusive growth) or
a 1/3 power law (Ostwald ripening) (slow growth) but followed a first power growth law
(fast growth) for larger volume fractions.

At temperatures below the critical point, a liquid can coexist with its vapor; whereas, at
and above the critical isotherm, only a gas can exist. Klein and Wanders (DLR, Koln)
sought to observe the homogenization of the two phases as the system is heated to its
critical point. Since the compressibility diverges at the critical point, they sought to
eliminate any hydrostatic head by performing the experiment on D-1 with near critical
sulfur hexafluoride, SF,. Surprisingly, they found that it was very difficult to
homogenize the sample at the critical point. It was later realized that since the thermal
expansion also diverges and the thermal diffusivity goes to zero at the critical point, even
the slightest thermal gradient could case large differences in density distribution and the
equilibration time would be much longer than the mission duration.

The divergence of the heat capacity on either side of the critical point is one of the
important tests of universality of critical behavior. A characteristic A-shape of the heat
capacity vs. temperature with a singularity at the critical temperature is predicted
theoretically. Measurements of the slope in this vicinity are used to determine the
exponent governing the rate at which the heat capacity diverges. One of the difficulties
encountered in such measurements is caused by the fact that the compressibility of the
system also diverges. Thus there is a large density variation in any finite test cell because
of the hydrostatic pressure and the actual critical condition is met at only one point in the
test cell. Measurement of heat capacity of the cell then integrates over near-critical
conditions, but cannot provide accurate data near the peak in the curve.

Nitsche and Straub (LehrstuhlA fur Thermodynamik, Munchen) tried to obtain a more
accurate measurement of the heat capacity of sulfur hexafluoride near its critical point on
the D-1 flight. Much to their surprise, the data in the vicinity of the critical point was
smeared out even more than on Earth. Instead of the expected peak at the critical point,
they measured only a broad hump. It was later found that instead of a well-mixed system
with the fluid wetting the walls of the test chamber, that a phase separation occurred and
persisted because of the very long diffusion time as the critical point is approached.

The test chamber was redesigned by Straub and Haupt for a repeat attempt on D-2. By
cooling through the critical temperature, the “real” behavior of Cv could be determined
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to within 0.9 mK from Tc, whereas ground measurements became disturbed by gravity at
15-20 mK from Tec. The heat capacity exhibited the sharp peak when cooling through the
critical point and the universal coefficients were within experimental error of those
obtained from group renormalization theory. Considerable hysteresis was seen in the Cv
behavior when heating from the two-phase region, through the critical point, into the
single phase region, which is attributed to the “critical slowing down” of phase
homogenization as the chemical diffusivity vanishes. The heat capacity is described by
the expression A™ 11 +B the measured critical exponent 0. was found to be 0.109+0.02;
theory predicts o = 0.110+0.0045. (See Le Guillou and Zinn-Justin, Phys. Rev. B (1980)
3976.)

The same experiment also confirmed the phenomena of “critical speeding up” or the
“piston effect” for rapid heat transport near the critical point despite the fact that thermal
diffusivity vanishes in this region. This effect had been seen on the ground, but was
attributed to convective mixing as the compressibility diverges. However, the D-2
experiment confirmed the heating was due to an insentropic expansion instead of
convective transport. By heating the wall of a container filled with a highly compressible
fluid, a thin boundary layer is heated from diffusive heat transfer. The fluid in the
boundary layer expands adiabatically, compressing the bulk fluid. Since the bulk fluid
becomes heated by the adiabatic compression, heat transfer is virtually instantaneous.

Beysens used the “piston effect” to quench near critical SF; from the single phase region
into the two-phase region on IML-2. A planned maneuver during one of the runs
demonstrated how acceleration disturbs the piston effect thermal transport. He also
observed two different growth regimes in the same system; a fast growth regime with a
first power time dependence, and a slow growth regime with a 1/3 power time
dependence, depending on the quench depth.

Ferrell (U. Maryland) used the critical point facility on IML-2 to measure electrostriction
effects and the time constant for thermal diffusion near the critical point of SF,
Electrostriction is the deformation of a fluid from an applied electric field. The effect can
be quite pronounced near a critical point because of the divergence in compressibility,
however, it is slow to develop because of the long thermal diffusion times. The thermal
diffusion measurements agreed with ground based measurements more than 100 mK
above the critical temperature, but were lower by a factor of 1.7 at 1.4 mK above Tc.

Precision measurements of the thermal field using high sensitivity (uK) thermistors by
Michels (U. Amsterdam) on IML-1 confirmed the theoretical model for isentropic heat
transfer from the piston effect.

Klein (DLR, Koln, Germany) used the piston effect to heat and cooled SF through the
critical point and observed the effect with laser light scattering. He observed critical
opalescence almost immediately after cooling through Tc, but found that hours were
required for the system to come to thermal equilibrium. He also determined that the gas-
liquid configuration in the two-phase region is determined by interfacial effects.
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Homogenization after heating into the single-phase region scales with the correlation
length, which goes as (T-Tc)*®.

Lipa (Stanford U.) sought to circumvent some of the problems associated with attempting
to measure critical phenomena at the liquid-vapor critical point. Instead he chose to
measure the heat capacity in liquid helium at the lambda-transition, the temperature at
which normal He is transformed into superfluid He-II. This transition is known as the
lambda transition because of the 1-shape of the heat capacity in the vicinity of the
transition. Since He remains a liquid on either side of the transition, the divergence in
compressibility is avoided. However, the transition temperature is pressure dependent, so
that in a gravity field, critical conditions exist at only one plane in the system. However,
since the order parameter for the lambda transition is a two-component superfluid
wavefunction, as opposed to the scalar density difference in the gas-liquid critical point,
these two systems are not in the same universal classes, hence the critical exponents will
not be the same.

Lipa and his group at Stanford had developed a thermometry system using
superconducting quantum interference devises (SQUID) to detect minute magnetic
changes in a paramagnetic salt, which can be directed related to temperature with
nanoKelvin resolution. With this device, they were able to measure a sharp peak in the
heat capacity curve to within a few 100 nK of the lambda point before the pressure
variations in the finite test cell began to smear out the data. They were limited in how
small they could make the test cell because of the correlation length over which the atoms
act collectively. Therefore, they carried the experiment on USMP-1 to obtain
measurements to within a few nK.

One of the unforeseen difficulties was heat pulses from cosmic rays and charged particle
radiation in. They were eventually able to calibrate out and work around these events.
Lipa found the value for the critical exponent to be -.01285 + 0.00038. This value falls
between the theoretical predictions of —0.007+0.006 (Le Guillou and Zinn-Justin, Phys.
Rev. B (1980) 3976) and —0.016+0.006 (Albert, Phys. Rev. B (1982) 4912). In a sense,
the lambda point is an ultimate test of the theory because of its unique sharpness. The
value of such a test can best be described by a direct quote from Lipa,

» this is at the foundations of condensed matter physics. We need to be sure the
foundations are right so we can be confident of the scientific structure which supports
our technology base. There is another angle, but maybe even harder [to explain]: RG
[renormalization group theory] is used extensively in the Standard Model of
elementary particles. There is a well-established relationship between this and critical
phenomena. So one might one day get some insight into the 'theory of everything' via
an obscure aspect of helium. Bit of a stretch, but that's where Nobel prizes come

from!”
A follow-on experiment on USMP-4 extended the heat capacity measurements near the

lambda-point in which the He is confined to a spacing of 57 microns by carefully
machined Si discs. The objective is to test scaling predictions for the transition to a lower
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dimension system. Normally, this transition takes place only when the dimension is on
the order of Angstroms, but in semiconductors it can be as large as 0.1 micron, a length
being approaches by modern electronics. Since the correlation length diverges near a
critical point, the distance over which the transition occurs can be greatly magnified.
Attempts are now being made to correlate the data from the flight experiment with
theory and other measurements.

Drop Dynamics

On Spacelab-1, Rodot and Bisch (CNRS, France) and analyzed the deformations of a
tethered drop of silicone oil as it was oscillated at various frequencies. They were able to
determine the various resonance modes and compare with theory.

Wang (Vanderbilt University) studied the rotation and fissioning of freely suspended
liquid drops on Spacelab 3 and again on USML-1 and USML-2 using the 3-axis acoustic
levitator. These experiments are tests of a classical astrophysical problem dealing with
the formation of double stars (see S. Chandrasekhar, Proc. Royal Soc. London A286
(1965) 1-26). Qualitative agreement with theory was found in the Spacelab 3
experiment, but the drops tended to tended to fission before the theoretical rotation rate
was reached but the drop had been flattened by the acoustic radiation pressure . On
USML-1, Wang and Trinh measured the bifurcation point as a function of drop shape and
were able to show that the bifurcation point agreed with theory in the limit of spherical
drop shape. A comprehensive study of the effect of drop flattening on the 2-loped
bifurcation point was carried out on USML-2. The experiments were supported by a
series of experiments carried out in the glovebox by Trinh (JPL) to test various droplet
injection techniques.

Other experiments conducted with the 3-axis acoustic levitator by Wang and his team at
Vanderbilt University investigated core centering in compound drops. It was shown that
an induced sloshing mode produced centering forces in drops with a gas core(liquid
shells) as well as drops with an immiscible liquid core. Understanding of the centering
forces could be important in the manufacturing of perfectly concentric glass shells for
inertially confined fusion experiments (ICF).

Weinberg (U. Arizona) attempted to use the three-axis acoustic levitator on USML-1 to
measure the interfacial tension between two immiscible liquid phases by oscillating a
compound drop, but ran into technical difficulties when attempting to deploy the two
droplets. Yamanaka and Kamimura (National Aerospace laboratory, Japan) had similar
difficulties when they attempted to measure the surface tension waves on stationary and
rotating drops in a tri-axis acoustical chamber on SL-J.

If the induced oscillations in a drop have large amplitudes, various non-linear effects
show up. Energy can be fed from one mode of oscillation to another, an effect known as
mode coupling was observed. A hysteresis effect in the amplitude response was observed
as the exciting frequency was swept back and forth across the resonant frequency, with a
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peculiar jump in amplitude. Finally, the onset, transition, and fully developed chaotic
oscillations of drops were observed. Understanding the conditions leading to chaotic
oscillations are important from a practical as well as an academic point of view because
droplet evaporation and combustion increase with increasing oscillation amplitude and
frequency. Additional experiments involving the extraction of physical property data
from large, non-linear oscillation of acoustically levitated drops were carried out using a
single axis interference levitator in the glovebox on MSL-1R by Leal (UCSB), Trinh
(JPL), Thomas (JSC), and Crouch (NASA HQ).

Sahdal (USC), with Trinh, Thomas, and Crouch used the same device on MSL-1R to
determine if the deformation and rotation of an acoustically levitated drop could be
controlled well enough to measure internal flows within the drop. In particular, they
wanted to determine if Marangoni flows from spot heating the drop on one side could be
measured. By reducing the power level to the minimum required to keep the droplet
positioned in microgravity, the shape distortion could essentially be eliminated (at least to
their limit of measurement of the ratio of the axes, which was1%. Drop rotation in a
single axis levitator results from any slight misalignment of the acoustic reflector or
asymmetric reflections from the container walls and has always been difficult to control.
By fine tuning the position of the acoustic reflector, drop rotation could be reduced to 0.1

Ips.

Apfel and his team at Yale University used the 3-axis levitator on USML-1 and USML-2
to study the behavior of surfactants by observing the frequency and amplitude of freely
suspended oscillating drops. They were able to extract material properties such as
dynamic surface tension and shear as well as dilatational surface viscosities. The
dramatic difference in diffusion and sorption times between Triton X-100 and bovine
serum albumin (BSA)was illustrated. Since BSA is a slow sorber, the Marangoni stresses
are significant, leading to much faster damping than for pure water.

Marston (Washington State University) with Trinh and Depew (JPL) used an ultrasonic
resonator in the glovebox on USML-1to investigate the positioning, shaping, and
agglomeration of bubbles and oil drops in water. It was possible to coat the inside of a
bubble with oil and study the centering mechanism.

Miscellaneous Experiments
Super Fluid Helium Experiment

Superfluid helium possesses several characteristics which make it uniquely suited for
cooling space-based instruments. Such instruments include the Infrared Astronomical
Satellite (IRAS) and the Space Infrared Telescope Facility. Liquid helium 4 (He 4) and
its rare isotope, helium 3, remain liquid at absolute zero. At a temperature of 2.17K and a
vapor pressure of 5.1 kP (38.4 Torr), He 4 undergoes a transformation to a superfluid
state. In this state, He 4 can transport large amounts of heat at very small temperature
differences. Heat is transported by coherent wave motion rather than by diffusion. Its
cffective thermal conductivity is several orders of magnitude higher than any other
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material. The high thermal conductivity is maintained in thin films and pores so smail
that a normal liquid would be immobilized. The advantage of this property is that the
thin films, held to walls by van der Waals forces are superfluid. Therefore, the entire
superfluid mass behaves as a single thermal mass with a temperature difference of a few
milli-Kelvins.

Under certain conditions, superfluid helium has zero effective viscosity whereas the
viscosity for bulk motions is not zero (about 1/100 of water). Therefore, the system may
be extremely sensitive to small surface tension forces and/or vehicle acceleration s since
the natural damping of these motions is limited.

Another unique characteristic of superfluid helium is known as the fountain effect. In
small pores or thin films, the application of a small temperature gradient along the pores
sets up a pressure differential that tends to push the liquid to the warmer end. This
fountain pressure is used in zero gravity to contain the liquid in the cryostat, while
allowing the vapor created by heat flow into the bulk helium to evaporate to space. A
porous plug is placed in the vent line. The outer end is cooled by the evaporation of
liquid to gas, and the resulting temperature differential generates a pressure which keeps
the liquid in the tank.

A Super Fluid Helium Experiment was flown Spacelab 2 by a team from the Jet
Propulsion Lab headed by Mason. The technological and scientific objectives were
divided into three separate investigations; (1) the Quantized Surface Wave (QSW)
experiment to investigate third-sound surface waves in films of superfluid helium, (2) the
Bulk Fluid Dynamics (BFD) experiment to determine the response (slosh modes and
decay time) of superfluid helium to known acceleration levels, and (3) the Bulk Thermal
Dynamics (BTD) experiment to determine temperature fluctuations and variations (to
within 10 mK) associated with slosh modes.

Surface waves are one the order of a micron in normal gravity and damp out fairly
rapidly. In microgravity, they tend to be thicker and were observes to persist for as long
as 60 seconds. The other two objectives were reported met, but details were given.

Geophysical Fluid Flow

Hart (U. Colorado) developed a method of simulating the three-dimensional geophysical
fluid flows under the combined influence of rotation, thermal gradients, and a gravity-like
central force. The Geophysical Fluid Flow Cell (GFFC) consists of a stainless steel
hemisphere surrounded by a sapphire hemisphere with a layer of silicone oil between.

An alternating high voltage was applied between the inner and outer so that the induced
polarization in the silicone oil interacts with the electric field to give a gravity-like body
force on the fluid. By heating and cooling different regions while the system was rotated,
convective flows could be produced that are analogous to large scale flows in planetary
or stellar atmospheres or interiors . There are 4 dimensional parameters that characterize
the flows in the GFFC: the Prandtl number, fixed at 8.4, the aspect ratio (gap width to
inner radius), fixed at 2.65, The Taylor number, which measures the ratio of rotational
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forces to viscous forces, and the Rayleigh number, which measures the buoyancy-drive
thermal convection to conductive heat flow. The convective flow fields in the
hemisphere were visualized via Schlieren and shadowgraph photography. An ultraviolet
sensitive dye was added to the silicone oil to aid in flow visualization.

The GFFC was flown on Spacelab 3 and again on USML-2. The primary objective of
Spacelab 3 experiment was to study the interaction of rotation and convection similar to
that which occurs in the atmosphere of a rotating planet like Earth or Jupiter. A variety
of interesting flow structures were observed as rotation rates and equator to pole heating
was varied. The observed flows were used to check 3-dimensional computational
models.

Several classes of experiments were conducted on USML-2: slow rotation, simulating
mantle-like flows, fast rotation, simulating solar-like flows; symmetric heating,
simulating solar or Earth core; and differential heating, simulating Jupiter’s or Earth’s
atmospheres.

Rotationwith spherical heating produced banded patterns not seen before in numerical
simulations and may provide an alternative view of the mechanisms responsible for the
observed structure of the Jovian atmosphere.

In slow rotation experiments, climatic “states” in the form of two distinct convective
patterns were found to exist with the same external conditions, differing only by the
initial conditions. These patterns are persistent and are insensitive to small changes in the
external conditions. Data was obtained on how theses state break down under larger
changes in operating conditions. The transition from anisotropic north-south “banana
convection” to the more isotropic convection was studied. This information may lead to a
scaling argument for classifying different planetary atmospheres.

Other experiments with latitudinal heating show evidence of baroclinic wave instabilities
and successfully showed how spiral wave convection breaks down into turbulence.

Order —Disorder Transitions

Chaikin (Princeton U.) used the glovebox on USML-2 to study to assembly of colloidal
systems as a function of solid volume fraction. Computer simulations indicated, for
volume fractions ranging from 0.545 to 0.74, short range van der Waals-like forces
between the spheres would cause them to form into close-packed crystal-like structures,
very much like atoms in a metal form close-packed crystalline structures. For volume
fractions less than 0.494, the particles should remain in solution, and crystals could
coexist with solution in the intermediate range. A metastable, glass-like phase was also
predicted to exist for volume fractions greater than 0.58.

These predictions were tested by suspending 0.5 micron PMMA spheres in mixtures of
decalin and tetralin for index matching. After homogenization, the suspensions were
allowed to relax into their equilibrium configuration. The formation of the crystal
structures could be observed and analyzed from diffraction patterns created by shining
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laser light through the suspension, similar to the analysis of metallic structures using X-
ray diffraction. Particle motion was studied using dynamic light scattering. By “pinging”
the system and observing the response of the structure, the elastic properties could also be
inferred.

In normal gravity the configurations were not in equilibrium because sedimentation was
much stronger that Brownian motion. Crystals were formed which tended to be mixtures
of face centered cubic (FCC) and random hexagonal close-packed (RHCP) structures. In
microgravity, the FCC phase was not observed and the structure was entircly RHCP.
(By random HCP, we mean that the probability of every third layer being different is 0.5,
or in other words, the chance of seeing ABC is the same as ABA.) Also, wing-like
dendrites were observed in the microgravity structures that were never seen in the ground
controls. It is not clear if dendrites actually start to form and are sheared off by
sedimentation, or if the conditions favorable to their formation are absent.

A glassy phase was formed on Earth with a volume fraction of 0.619 that remained in this
metastable state for more than a year without crystallizing. The same system crystallized
in microgravity in 3.6 days. By the end of the mission it had grown to 1 cm and filled the
container. Further, it survived re-entry and remained in the lab for 6 months, after which

it was “remelted” by stirring. It then re-grew into the disordered glassy phase .

These studies were extended on MSL-1R to study nucleation and growth from time-
resolved Bragg and low angle light scattering as well as measurement of elastic modulus
from dynamic light scattering.

Mixing And Demixing of Transparent Liquids

Langbein (ZARM, U. Bremen) used a floating zone configuration to study the effects of
capillarity on the mixing and demixing of two immiscible liquids on D-1. A mixture of
benzylbenzoate and 40Vol.% paraffin oil was deployed between two discs. The upper
disc was heated above the consolute temperature. Marangoni convection stirred the
mixture and the interior counter flow carried bubbles, that had inadvertently been
introduced, to the surface where they ruptured, thus demonstrating this as an effective
finning technique. As heating progressed, the critical wetting condition temperature was
exceeded and the benzylbenzoate spread across the heated disc, in accordance with the
critical point wetting theory of Cahn (See J. W. Cahn, J. Chem. Phys. (1977) 667.) The
rising inner column of benzylbenzoate thinned and eventually broke into two segments.
Eventually, through diffusion and Marangoni convection, the benzylbenzoate at the
heated plate exceeded the consolute temperature and homogenized with the paraffin oil.
Under passive cooling, a fog developed in the upper region as the temperature fell below
the consolute temperature. The droplet in the fog eventually coalesced to form the two
liquid phases.
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Particle Dispersion Experiment

Aggregation of various small particles was studied by Marshall (NASA Ames Research
Center) in the glovebox on USML-1 and 2. The motivation for these studies was to
obtain a better understanding the collapse of dust and debris in astrophysical and
planetary settings. The dust grains were dispersed by a puff of gas in a transparent 125
cm® chamber and the aggregation was observed with high magnification video recording.

Aggregation was observed to be very rapid in all cases. Dielectric grains of quartz and
volcanic ash particles aggregated into chains or filaments that were many tens of grains in
length. Larger (400 micron) particles formed single particle chains up to a centimeter in
length. Conductive copper particles formed similar chain-like aggregates. The size and
shape of the particles did not seem to affect the type of structure that was formed,
however, the chain length did appear to be proportional to the number density of the
particles.

Passive Accelerometer

Until STS-50 (USML-1), the quasi-steady acceleration on the Shuttle from gravity
gradient and atmospheric drag had never been measured. The conventional
accelerometers, used by the NASA Glenn Research Center in their SAMS system,
respond to the higher frequency accelerations from the normal vibrational modes of the
Shuttle, but the baseline bias is such that the extraction of a quasi-steady acceleration of
less that one micro-g from the milli-g oscillatory accelerations cannot be done accurately.
Alexander prepared a simple 2 cm diameter tube filled with water that also contained a 2
mm steel ball. The ball was positioned near one end of the tube with a magnet and then
was simply allowed to fall in the residual gravity field. From the observed motion of the
ball, the direction and magnitude of the quasi-steady acceleration could be determined
from the Stokes formula for a falling sphere (after corrections for wall effects).
Accelerations measured at the middeck were typically 4 — 5 micro-g with the direction
essentially along the X-axis (along the fuselage - the Shuttle was flying in the tail-down
attitude). Accelerations measured near the Crystal Growth Furnace (CGF) were
typically 0.5 micro-g and it was evident that the residual gravity vector was not along the
furnace axis as had been planned.

Combustion Experiments

There are two compelling reasons for the study of combustion in microgravity. One is
the issue of fire safety in the design and operation procedures of orbiting laboratories; the
other is take advantage of the weightless state to study certain combustion phenomena in
more detail and to test various models in which convection has been ignored in order to
be mathematically tractable.
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Examples of the first category of experiments are the Solid Surface Combustion
Experiment, the Smoldering Combustion Experiment, and Wire Insulation Flammability
Experiment were carried out on USML-1.

Smoldering combustion can be extremely dangerous in a space station since it can remain
virtually undetected for some time, but the increased temperature, due to the absence of
convection to carry the heat away, can greatly increase the amount of toxic fumes
generated. Stocker and Olson (NASA Glenn Research Center) along with Fernando-
Pello (U. California, Berkeley) found dramatic increases in CO and light organic
compounds when a porous urethane foam smoldered in microgravity as compared to
normal gravity, even though there was little difference in temperature and char patterns.

The wire flammability studies were carried out by Greenberg and Sacksteder (NASA
Glenn Research Center) and Kashiwagi (NIST) to simulate the behavior of possible
electrical fire in space without convection and with forced convection. The wires were
nichrome covered with 1.5 mm dia polyethylene insulation. An ignition of a wire
without forced convection resulted in quiescent cloud of vaporized which ignited but
failed to propagate. Under forced convection, the spreading flame stabilized around a
bead of molten insulation. Flame spread in concurrent flow was twice as fast as in
counter current flow and soot production was greater under counter current flow. The
flames quenched rapidly when the air flow was shut off.

The Solid Surface Combustion Experiment on USML-1 conducted by Altenkirch
(Mississippi State University) was the fourth of a series in which thin sheets of
combustible materials were ignited in a controlled oxygen environment. Other Spacelab
missions that carried this experiment included SLS-1, IML-1, and SL-J. The objective of
the series of experiment was to obtain the flame spreading and soot formation as a
function of pressure and oxygen content for comparison with theoretical models. These
data and the resulting models go into flammability requirements for materials usage
requirements in spacecraft and space experiment design. Unfortunately, the experiment
design permitted only one test per Shuttle flight.

A capability for running multiple solid surface combustion tests was introduced in a
glovebox experiments carried out on IML-3 in the Forced Flow Flame Spread Test
(FFFT) which is a forerunner of a facility for use on the International Space Station.
Fuel in the form of a tape or cylinder is fed into a small wind tunnel at the same rate as
the flame spread so that the flame front remains in the instrumented region for diagnostic
measurements. These measurements are used for comparison with theory. A team from
the NASA Glenn Research Center led by Sacksteder carried out 15 experiments using
sheets and cast cylinders of cellulose with concurrent airflows ranging from 2 to 8
cm/sec.

Kashiwagi and Olson (NASA Glenn Research Center) also used the glovebox on USML-
3 to investigate ignition and the transition to flame spread or smoldering combustion in
25 samples. Air flow was varied from 0 t0 6.5 cm/sec. Ignition was initiated by a hot
wire across the middle of thin (2-D) samples and by the focused beam of a halogen lamp
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for thicker (3-D) samples. In the 2-D samples, ignition occurred more readily under
microgravity conditions and the flame spread was always in the upstream direction. In
the 3-D sample ignition was from a spot in the middle of the sample and char pattern was
fan shaped, the internal angle of the fan increasing with air flow velocity.

Griffin (NASA Glenn Research Center) and Gard (NASA Marshall Space Flight Center)
compared the ability of the smoke detectors used on the Shuttle and those proposed for
the International Space Station to detect fires. A near field module, installed in the
USMP-3 glovebox, contained the sample to be burned and the near field diagnostics
which included collector grids for TEM analysis of the smoke particles. Combustion
products were blown through teflon hoses to the far field module which contained the
two smoke detectors, then returned to the glove box to be removed by the glove box
filters. Samples tested included a candle, paper, teflon and kapton coated wires, and
silicone rubber. It was found that sensitivity to various combustion products in space is
different than on Earth because the size distribution of the products is altered by the
combustion process in microgravity.

A number of experiments were conducted to take advantage of the quiescent
microgravity environment to study a variety of combustion processes. One topic of
significant practical interest is soot production. Soot is usually an undesirable product of
combustion for several reasons. One reason is that soot is a visible pollutant; one sees
soot in the black fumes emitted by diesel trucks, processing plants, and chimneys. (It
should be noted that recent changes in Environmental Protection Agency (EPA)
regulations call for significant reductions in amounts of such particulate materials in the
atmosphere.) In addition, soot production is tied to the emission of carbon monoxide -- a
toxic material -- and PAHs (polyaromatic hydrocarbons), many of which are
carcinogenic. Another of soot's undesirable qualities is that the thermal radiation, or heat
emission, of soot particles is often responsible for the spreading of fires. Soot also
hampers efforts to fight fires because its presence can obscure their sources, making it
more difficult to extinguish them. However, soot production is useful to the carbon black
industry, which is a large industry that uses soot in such products as tires, black plastic,
and dry-cell batteries. In addition, many furnace applications rely heavily on heat
radiation from soot to transfer heat from flames to boiler tubes in order to produce steam
from water. For all of these reasons, understanding the production of soot is a goal that is
important to researchers. Once understood, the process could be manipulated to control
both visible and invisible pollution from combustion technologies like diesel engines and
aircraft gas turbines, to enhance fire-fighting abilities, and to produce soot with qualities
that are beneficial to industry.

The geometry and behavior of a candle flame was investigated by Ross (NASA Glenn
Research Center) using the glovebox on USML-1. This was the first evidence that
diffusive transport was rapid enough to sustain a candle flame. After an initial transient
in which the flame is spherical and yellow, indicating soot is being formed, a steady state
is reached in which the flame is hemispherical and burns with a blue color, indication
little or no soot formation. Minor transient acceleration disturbances caused increased
luminosity and soot production.
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Fiber supported droplet combustion experiments were carried out on USML-2 and on
MSL-1R by Williams (UCSD). By tethering the droplets on a silicon fiber, they could be
kept in the field of view of the video recorder so that the burning rate and other
parameters could be recorded. The objective is to test theories of droplet combustion and
soot formation that are of importance to improving the efficiency of internal combustion
engines, gas turbine engines as well as home and industrial oil burning heating systems.
Microgravity allows to droplet size to be increased to as much as 5 mm so that the
combustion process can be studied in detail. Once the theory is developed, its predictions
can then be scaled back to the droplet sizes used in the actual combustion processes.

Williams carried out a similar experiment with free floating droplets on MSL-1R to
determine if the tether he had used previously had any effect on the combustion process.
The droplet is formed by injecting heptane through two injectors on opposite sides of the
test platform within the chamber. The injectors are retracted after the drop is formed. The
drop is then ignited by two hot-wire igniters that are brought near the droplet from
opposite sides to begin combustion with minimum disturbance to the droplet. The
burning droplet is the observed and recorded using video cameras and high-resolution
photographs.

The “Structure of Flame Balls at Low Lewis Numbers” (SOFBALL) experiment of Paul
Ronney, (University of Southern California) was performed on MSL-1R. In this
experiment, a container was filled with various combustible mixtures near their lean limit
of combustion. A flame ball was created by an electrical spark. A stationary spherical
flame front develops as fuel and oxygen diffuse into and heat and combustion products
diffuse out of the flame ball. This is the simplest possible geometry in which to study the
chemical reactions and the heat and mass transport of lean combustion processes. Over
50 years ago, Zeldovich found that the equations for steady heat and mass conservation
had a solution corresponding to a stationary flame front, but he also showed that the
solution was unstable. He did, however, consider the possibility that heat loss might be a
stabilizing factor, which is apparently the case since some of the flame balls lasted the
full 500 seconds until the experiment timed-out. It is expected that these experiments
will provide new insight on combustion processes in the lean burning limit, which are
important in improving the efficiency of engines and heating systems.

Soot formation in laminar flames was also studied on the MSL-1 and MSL-1R mission
by Faeth (U. Michigan). Soot formation in turbulent diffusion flames is of greater
practical interest, but their direct study in difficult because of their time and spatial
dependence. Therefore, laminar flames are studied to obtain the basic relations needed to
develop a tractable theory, the justification being that there are known similarities of gas-
phase processes between laminar and turbulent flames. Laminar flames are still affected
by buoyancy effects that complicate the analysis, thus the need to study them in
microgravity. The flames to be studied are hydrocarbon fuelled and burn in still air.
Measurements include flame shape, soot volume fraction, soot temperature distribution,
gas temperature distributions, and flame radiation. The flames in low gravity were much
longer that in 1 g due to the absence of buoyancy-driven convection. It was also found
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that the simplified theoretical analysis of non-buoyant laminar flame developed in 1979
by Spalding gave excellent prdedictions of flame shape after making an empirical flame
length parameter to account for the soot luminosity.

Enclosed laminar flames or commonly found in practical combustor systems such as gas
turbine combustors, jet engine afterburners, and in power plant combustors. The
enclosure is in the form of a duct with either co-flow or cross flow. The diffusion flame
in located where the fuel jet and oxygen meet. Typically, the flame is anchored at the
burner, but as the fuel velocity is increased, the flame front moves away from the burner
jet. Eventually, the flame jumps ahead of the jet and is said to be lifted. Too high a fuel
velocity will cause the flame to blow out. The stability of such flames in low gravity
were investigated by Brooker, Jia, Stocker, and Chen of the NASA Glenn Research
Center on USMP-4. The fuel was a 5S0V% mixture of methane and nitrogen. A free-jet
theory of Chung and Lee predicted that lifted flames would not be stable for Schmidt
numbers (ratio of kinematic viscosity to chemical diffusivity) less than 1, which is the
case for the dilute fuel mixture used in these tests. However, it was shown that the co-
flow in the duct did tend to stabilize the lifted flame, both in normal gravity as well as in
microgravity, although higher co-flow velocities were required to lift the flame and to
cause blow-out in microgravity.

Assessment of the Science

A number of the early microgravity fluids experiments investigated the shape and
stability of liquid zones to support anticipated materials science experiments that might
use extended floating zones for crystals growth. Perhaps the most important contribution
from most of this work was the demonstration that the behavior of such zones could
indeed be computationally modeled. However, one experiment used the zone shape to
measure the disjoining pressure of a film and another experiment stabilized an extended
zone beyond the Rayleigh limit in a test of Taylor’s “leaky dielectric theory). The latter
has applications in the design of fluidic systems

Many of the microgravity fluids experiments were directed to the study of Marangoni
convection. Since this type of convection is independent of gravity, it clearly acts in
terrestrial processes along with buoyancy-drive convection, and therefore must be
considered. These space experiments clearly demonstrated the existence of such flows
(which may have been debated in some quarters since they cannot be demonstrated
independently in normal gravity), as well as the ability to quantify and model their
effects, although it was also found that such flows can be unexpectedly quenched by
contaminants.. Considerable work went into determining under which conditions the
steady Marangoni flows become time-dependent and new criteria for this transition have
been developed. This knowledge is important for the design of floating zone crystal
growth experiments in which time-dependent flows produce growth defects.

The classical theory of Young, Goldstein, and Bloch, that describes the motion of
droplets or bubbles in a fluid driven by the Marangoni effect was found to apply only in
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the limit of vanishing Marangoni number and corrections to the theory have been
developed. It was also shown that multiple drops or bubbles can interact through the
thermal wakes left as they move through the fluid. Finally, it was found that fluid
properties such as dilatational viscosity, which are not accounted for in the Marangoni
number, can significantly affect the motion. These findings are significant in the design
of many materials and chemical processes used on Earth as well as in microgravity.

Several experiments involving pool boiling and heat transfer in microgravity produced
some surprising results in that the ability to dissipate heat from a submerged heater was
only slightly diminished. Instead of an insulating vapor film forming around the heated,
as was expected, strong thermocapillary jets formed which proved to provide an efficient
heat transfer mechanism. Not only is this significant for the design of systems that have
to work in a microgravity environment, but it may be possible to take advantage of such
jets to improve the efficiency of terrestrial boilers.

The behavior of several systems near critical phase transitions were studied.
Unanticipated difficulties were encountered in approaching the critical point because of
the “critical slowing down” phenomena. These difficulties were overcome and the
critical exponents that govern the divergence of thermophysical properties as the critical
point is approached were determined with improved accuracy. These appear to
consistent with the predictions the coefficients obtained from Wilson’s group
renormalization calculations.

A number of experiments were carried out on levitated drops to test and refine theories of
droplet oscillation, shape and fissioning under rotation, core centering, and nonlinear
effects. Techniques for extracting properties measurements from oscillating droplets
were demonstrated. Some of these measurement techniques were utilized in obtaining
thermophysical data from undercooled melts in the electromagnetic levitator on MSL-1R.

Other investigations included a three dimensional simulation of geophysical flows under
the influence of a central gravity-like force together with rotation and differential heating,
particle aggregation, order-disorder transitions in the assembly of an ensemble of hard
spheres, mixing and demixing of immiscible systems, the management of superfluid
helium in low gravity, and the demonstration of a simple falling sphere method for
measuring the quasi-steady residual acceleration on the Shuttle. All told, these fluid
experiments produced a total of 563 papers of which 323 were published in peer
reviewed journals. The bibliography also includes another 43 references from the various
fluid science Principal Investigators, that were of general interest to the behavior of fluids
in microgravity, but were not directly related to the experiment they flew on Spacelab
missions.

The dozen or so combustion experiments have produced a wealth of information that is
not only applicable to fire safety in space vehicles, but also fundamental to understanding
the combustion process in droplets, combustion near the lean-burn limit, the formation of
soot in various combustion processes. These experiments produced another 118 papers,
including 55 in journals.
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New Technology and Technical Spin-offs

Heat and mass transport from fluid flow is so fundamental to all of materials processing
that it is difficult to single out specific applications where such research has made direct
contributions. Marangoni convection, which is often ignored in terrestrial processing,
can be significant, even in the presence of buoyancy convection, if there are free surfaces,
bubbles, or immiscible droplets present. These space experiments have provided a much
better understanding of the effects of these types of flows that are not only needed for the
design of future microgravity experiments, but apply to many terrestrial processes as
well. Hopefully, the publications resulting from the microgravity research will make the
terrestrial process engineers aware of the importance of including the effects of such
flows in their process design.

The fundamental work that was done on drop oscillations and the development of
techniques for extracting materials properties from their observation, can be considered
enabling technology for being able to extend the measurements of thermophysical
properties into undercooled molten state using electromagnetically suspended droplets.
Such measurements are key to the development of new metallic glass systems and other

metastable alloys.

The combustion research has the potential of leading to more efficient combustion
processes with a reduction of unwanted combustion products such as soot and other
noxious contaminants. Furthermore, the flammability testing and developments in
spacecraft fire safety also have direct applications to home and industrial fire safety.
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Materials Science Experiments

Normally one categorizes materials as metals, ceramics, semiconductors, and polymers,
which reflects the nature of their chemical bonding. Microgravity experiments have
primarily focused on metals and semiconductors, although the distinction get blurred
which creamics are added to metals to form composites.. The primary emphasis in the
study of metals has been to understand the evolution of their microstructure and to
develop techniques for controlling it during processing. The primary emphasis in the
study of semiconductors can been the growth of single crystals with controlled
composition and defect formation. Key to the success of both of these endeavors is
knowledge of the thermophysical properties of the constituents in the liquid phase. Asit
turns out there is a compelling reason for certain of these measurements to be made in a
Jlow gravity environment. Levitation techniques for certain thermophysical properties
measurements permit the measurement of certain properties in the deeply undercooled,
which are of value for predicting the cooling rate required for glass formation, which
leads to the final section of glass formation experiments in microgravity.

Metals, Alloys, and Composites

Introduction

Metals tend to be ductile because their crystal structure contains slip systems which allow
planes of atoms to slide over one another through the dislocation mechanism . A
dislocation is a missing line of atoms in the otherwise regular spacing in a small
crystalline grain of the metal. Under stress, the dislocation can move through the grain,
resulting in the net displacement of a whole plane of atoms, much like moving a rug by
forming a small kink and then moving the kink across the rug. Pure or elemental metals
are generally too weak to be used for most structural applications because of their
ductility. However, they can be strengthened dramatically by blocking the motion of the
dislocations. There are several methods for accomplishing this. They may be alloyed
with other metals whose atoms are larger or smaller than the host metal (solid solution
hardening). The resulting irregularity in the lattice tends to block the motion of the
dislocations. Since dislocations cannot propagate from one grain to another, promoting a
fine grain structure will strengthen a metal. Dispersing very small particles or fibers
throughout the metal is also effective means of strengthening a metal . These particles
can either be precipitated from a dissolved component as the metal is cooled
(precipitation hardening), or a second phase, often a refractory ceramic, can be added to
form a composite.

When one attempts to solidify a multicomponent system from the melt, difficulties arise.
The foreign atoms don’t fit into the lattice as easily as the host atoms forming the matrix,
and segregation results. The melt containing the rejected atoms will have a different
density from the bulk solution resulting in solutally-driven convection which cause the
final solid to have a non-uniform composition on a macroscopic scale
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(macrosegregation). Dispersed particles will have a different density and will tend to
cither sink or float. Particle behavior is also affected by the interfacial energy between
their surface and the melt, which determines if they are wetted by the melt.

Much of what goes on in a multi-component melt is affected by gravity, but some of the
more subtle interfacial effects are not. Yet these interfacial effects may play important
roles in many terrestrial processes, but are poorly understood because they are masked by
gravitational effects. Using microgravity as a tool to sort out the non-gravitational from
the gravitational effects may add to our understanding of how these processes operate,
which can lead to advanced materials with enhanced properties.

With the large computational capability that now exists, much use is being made of
computer modeling of solidification processes, particularly in the case of large expensive
castings. In principle, it is now possible to compute the temperature and compositional
fields as the casting solidifies and use these to predict the resulting microstructure,
provided we know all of the processes taking place, and also have accurate knowledge of
the thermophysical properties of the materials of interest. Unfortunately, many of the
thermophysical properties, such as diffusion coefficients and thermal conductivities are
not known for the molten state and are difficult to measure because convective transport
can easily influence the measurement. Therefore, there is great interest in using the
microgravity environment to make this type of measurements.

Normal freezing generally produces equilibrium phases, i.e., atomic configurations that
are the most ordered or have the minimum free energy. Recently, there has been much
interest in trapping non-equilibrium or metastable phases by various rapid solidification
techniques because of their interesting properties. For example, metallic superconductors
with the highest transition temperature (for metallic systems) such as Nb;Sn and Nb,Ge
have the so-called A15 structure, which is a nonequilibrium phase. Metallic glasses are
another example which are useful because their lack of grain structure makes them more
resistant to corrosion. Iron-based metallic glasses have found useful applications as high
efficiency transformer cores because the absence of grain structure makes it easier for
magnetic domains to move resulting in much smaller hysteresis losses.

It is possible to magnetically levitate metallic samples in microgravity so that they can be
melted and solidified without physical contact. Without a foreign surface to initiate
nucleation, a melt may be cooled several hundred degrees below its normal freezing
point. This provides an opportunity to measure properties of a melt in an undercooled
state. Knowing the viscosity and surface tension of materials in this state may provide
clues for more effective means for trapping metastable phases.

The alloy solidification experiments that have been performed of Spacelab generally fall
into three general categories: (1) experiments designed to understand how the
microstructure evolves during solidification, (2) studies of interfacial effects that control
the distribution of second phase particles, and (3) measurements of thermal physical
properties.
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Part of the interest in solidifying eutectics in microgravity arose from an experiment
performed by Larson, then at Gramman in Bethpage, NY during the Apollo-Soyuz
flight. Larson directionally solidified the MnBi-Bi eutectic system, which is a low
volume-fraction system in which the MnBi phase forms an aligned rod-like structure
instead of lamellae in the Bi matrix. The intermetallic compound, MnBi is an interesting
permanent magnet material and Larson was trying to improve its strength by using
microgravity to get better alignment in the MnBi rods. To his surprise, he found that the
rods were finer and more closely spaced than his ground control sample. Interestingly,
the samples he processed on Earth followed the Jackson-Hunt theory very nicely while
his space samples departed significantly from the theory. Subsequent tests using
magnetic fields on the ground to help suppress convection, gave results similar to his
flight samples. This seemed very strange because the Jackson-Hunt theory considers
only diffusive transport; no convection. Yet there are apparent departures from the
theory when convection is suppressed. Larson attempted to repeat his experiment on the
MSL-2 flight using Co-Sm, another important magnetic system. Unfortunately,
equipment problems prevented him from obtaining useful data.

Mueller and Kyr (Universitat Erlangen-Nurenberg) performed an experiment similar to
Larson’s on SL-1 and on D-1 using the InSb-NiSb pseudo-binary eutectic system. They
also performed the experiment in higher g-levels using a centrifuge. Their results were
similar to Larson’s; agreement with J ackson-Hunt theory when convection is present,
finer structure and spacing in the absence of convection. They found that the volume
fraction of the NiSb phase in their final solid was lower than their starting eutectic
composition and suggested that thermal diffusion (Soret effect) may have caused this
composition shift away from the eutectic and that this was responsible for the apparent
departure from the Jackson-Hunt law. The convective stirring in the 1-g sample
apparently does not affect the spacing between the phases, but does keep the bulk fluid at
more or less constant composition by simply overwhelming the Soret effect.

However, Favier and de Goer (CEA-CENG, Grenoble) directionally solidified Ag-Ge,
ALNi-Al, and Al,Cu-Al on TEXUS suborbital rockets and on SL-1. They found no
change in the lamella spacing or volume fraction for the Ag-Ge and the Al,Cu-Al
systems, but found coarser spacing and increased volume fraction of the minority phase
in the microgravity sample of Al,Ni-Al, just the opposite result of Mueller and Kyr. The
change in volume fraction again argues for the possibility that Soret diffusion may have
shifted the starting composition away from the eutectic composition , which could
explain the change in spacing.

Wallrafen and Dupré (U. of Bonn) attempted to directionally solidify LiF - LiBaF,
eutectic on D-2. In 1-g experiments, the component LiBaF; tended to accumulated in the
lower regions of the melt. The accumulation of the LiBaF, component was eliminated in
the D-2 samples, indicating the separation of this component must have been gravity
related rather than a result of Soret diffusion. No difference in volume fraction or lamella
spacing was observed between the space and ground samples.
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Tensi (Technical Universitat, Munchen) reported a reduction in interdendritic spacing
under microgravity conditions in hypoeutectic AlSil11 on D-2 and in AlSi7 on D-1 and
found no change in the volume fraction of the Si. These experiments were run with a
gradient of 15K/cm at growth velocities of 0.5, 1, and 2 mm/min. The 0.5 mm/min
produced a plane front solidification, while the others resulted in dendritic solidification.
The material between the primary dendrites had eutectic composition and the spacing of
the lamella in this interdendritic material was substantially less in the microgravity
samples. Since there was no change in the volume fraction , Soret diffusion was
apparently not effective in this system. Tensi argues that the increased spacing in the 1-g
sample is a result of micro-convection which increases the transport of material between
Jamella, thus increasing the effective diffusion length which results in the increased
spacing.

Ohno and Motegi (Chiba Institute of Technology) investigated a different aspect of
cutectic microstructure. Instead of directionally solidifying, they melted and cooled
hypo- and hypereutectic compositions of the Al,Cu system using the Continuous Heating
Furnace on SL-J so that they could compare the resulting microstructures in the presence
and absence of gravity. When the hypoeutectic Al Cu system is quenched in normal
gravity, the first-to-freeze primary Al dendrites, being less dense than the bulk melt, will
detach from the wall and float to the top. When the excess Al has been removed in this
manner, columnar grains of eutectic composition grow along the direction of heat flow.
In space, the primary Al dendrites simply remained on the wall and the remaining
cutectic formed columnar structures around them. Grains of primary Al,Cu are the first
to freeze in the hypereutectic composition. Being more dense, these primary Al,Cu
grains settle to the bottom. When the excess Cu is removed in this manner, the remaining
melt solidifies as columnar eutectic grains. In space, however, the primary Al,Cu
appeared along then walls, but no free Al,Cu crystals were observed. Small gas bubbles
were also found near the walls and larger ones in the middle of the final ingot. It was
speculated that these originated from adsorbed gas in the graphite crucible.

Interfacial Stability

As solidification progresses in a binary or multi-component system, the rejected solute
builds up in front of the solidification interface which has the effect of lowering the
freezing temperature at the interface since some of the component with the higher
freezing temperature has already been removed. However, the bulk melt away from the
solidification interface has the original composition, which has a higher freezing point.
Therefore, the freezing point of the melt rises from the lower value at the growth front to
the higher value of the bulk melt. Unless the imposed thermal field in front of the
solidification interface is everywhere higher than the local freezing point of this melt, the
melt is said to be constitutionally undercooled, which leads to an interfacial instability. If
a small portion of the growth interface is somehow displaced ahead and it finds the
Jocal freezing point to be higher than the local temperature, it will continue to advance.
Thus the interface will break down, first into a cellular pattern if the constitutional
undercooling is small, or into long finger-like projections if the undercooling is larger.

34



The sides of these projections will also break down to form secondary arms, which in
turn can break down to from tertiary arms. The resulting structure resembles a fir tree,
hence the term “dendrite”.

A simple constitutional supercooling criterion (known as the CS criterion) was
developed by Rutter and Chalmers in 1953 (Can. J. Phys. 31 (1953) 15) that predicts the
ratio of the gradient required to stabilize the interface to the growth velocity for a given
solidification system. In 1964, Mullins and Sekerka (J. Appl. Phys. 34 (1964 323)
developed a more rigorous theory based on a stability analysis that included the liquid-
solid interfacial energy which can provide a stabilizing effect on the interface. Like most
theories concerning solidification phenomena, it was necessary to assume no convection
in order to simplify these analyses.

Carlberg (Mid Sweden University, Sundsvall, Sweden) used a multi zone furnace in a
Getaway Special (GAS can) on SL-J to solidify Ga-doped Ge using the gradient freeze
technique with Peltier pulsing for interface demarcation. In this process, the
solidification rate increases as the specimen is solidified. Carlberg was able to show that
the flight as well as ground based results were consistent with the predictions of Mullins
and Sekerka so long as the experiment was configured with little convection (vertical
with stabilizing thermal gradient). However, he was able to show significant departure
from the M-S theory as convection was increased.

Potard, Duffar, and Dusserre (CENG, Grenoble) devised a method for monitoring
conditions at the interface based on the heat being supplied and/or extracted from the
growth process. The latent heat of fusion being liberated as the crystal grows is
proportional to the growth rate as well as the area. Thus, if this heat can be measured, it
should be possible to determine the conditions at the growth interface. Three samples
were prepared for the Gradient Heating Furnace; one with pure InSb, one with pure InSb
but with a step area change, and one with doped InSb to produce an interfacial
breakdown due to constitutional undercooling. The ampoules were covered with super
insulation to provide an adiabatic radial boundary condition. Heat was introduced and
extracted through graphite plugs at each end of the ampoule. The heat flux meters consist
of adjacent fine wire thermocouples in the graphite plugs. The technique was
demonstrated in a semi-qualitative manner on the D-1 flight in that seeding and growth
transients could be identified and the measured heat fluxes were in reasonable agreement
with the mathematical models of the process.

A unique and highly sophisticated apparatus for studying details of the solidification
process was developed by Favier and coworkers at the CENG, Grenoble under a
cooperative program between NASA and the French Space Agency (CNES) and the
French Atomic Energy Commission (CEA). The official name is Materials for the Study
of Interesting Phenomena of Solidification on Earth and in Orbit or. Three 6 mm
diameter, 900 mm long samples are processed in parallel. Resistance and thermal
measurements are made on one sample while Seebeck voltage measurements are made on
another. Peltier pulsing is applied to the third sample to mark the solidification interface
for post flight analysis. The middle 500 mm of the samples are melted using two
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furnaces. One solidification front is kept stationary while the other is moved back and
forth to create a solidification front that can be move at different velocities. By
measuring the differential Seebeck voltage between the stationary and moving interface,
the kinetic undercooling can be determined as a function of growth velocity. At the
freezing point, a solid will remain in equilibrium with its melt indefinitely. This kinetic
undercooling is the driving force for continued solidification. The kinetic undercooling
will be small for plane front solidification, but since additional interfacial energy must be
provided as the plane front begins to break down, the kinetic undercooling must get
larger. Thus, the transition from plane front solidification to cellular growth can be
observed as a change in the Seebeck voltage and the critical growth velocity where the
plane front interface begins to break down can be determined accurately. Many
applications ranging from bulk growth of semiconductors to single crystalline turbine
blades require plane front solidification and it is important to know how fast they can be
solidified before this breakdown occurs. The MEPHISTO instrument, flown on USMP-
1,2,3, and 4 provided the first opportunities to perform a critical test of the Mullins-
Sekerka theory as well as to explore other important phenomena involved in the
solidification process.

Favier used the USMP-1 opportunity to explore the interfacial breakdown in Bi-doped Sn
and the USMP-3 opportunity to quantify the disturbance and recovery of growth interface
as a result of thruster firings. Abbaschian (U. Florida) used the USMP-2 and 4 flight s to
investigate interfacial stability on the other side of the phase diagram; i.e. Sn-doped Bi.
Unlike most metals that solidify in an atomically rough interface, which allows the
interface to form nearly along the local freezing line, Bi solidifies along crystalline
planes, which are seen as facets. The properties of a faceted crystal depend on the
direction relative to the crystal axis and are said to be anisotropic. The primary
motivation for the study of the solidification of a Bi-rich alloy was to test the extension of
the Mullins-Sekerka stability criterion to include the effects of anisotropy, which acts to
stabilize the interface against breakdown into cellular and dendritic growth.

Where single crystals of uniform composition are required, the interface can be stabilized
by applying a sufficient thermal gradient at the growth interface to prevent interfacial
breakdown. However, in most alloy solidification processes, the first-to-freeze dendrites,
surrounded by the last-to-freeze interdendritic fluid, determine the microstructure of the
resulting solid. Therefore, it becomes important to know how dendrite growth depends
on processing parameters so that one can engineer the desired mircostructure.

Nguyen Thi, and Li (University of Aix-Marseille ) with Billia, Camel, Drevet, and
Favier (CEA-CENG, Grenoble) investigated the transition from deep cellular to dendritic
microstructure. Three aluminum-lithium alloys with the same composition were
directionally solidified in the same temperature gradient but at three different velocities
in the GFQ. The microstructure of the solid-liquid interface was quenched in. The
cellular or dendritic pattern is then revealed by grinding followed by chemical etching on
longitudinal and/or transverse sections. Macrosegregation is determined by chemical
analysis and microsegregation by SIMS.
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A similar experiment was performed using the AGHF on the LMS mission. The samples
were A1-1.5wt%Ni. In this system, which can be stabilized both thermally and solutally
on the ground, influence of strong convective flows are seen in the 1-g sample.

Billia and Jamgotchian (University Of Marseille) along with Favier and Camel (Centre
D'etudes Nucleaires De Grenoble) investigated the effect of convection on cellular
growth on D-1. Samples of lead with varying amount of thalium were directionally
solidified above the morphological stability limit in order to cause the interface to break
down into a celluar structure. The microgravity sample exhibited very regular cellular
structures, whereas less regular structures are seen in the ground based control samples.
The more complex structures in the 1-g samples was attributed to the effects of thermo-
solutal convection. Because of thermal fluctuations in the flight furnace, the actual
growth rate is not known, thus relating the cellular spacing to growth velocity was not
possible.

Dendrite Formation

Whenever solidification takes place in a medium where the surrounding temperature is
lower than the local freezing temperature, the growth front can become unstable and
dendrites can form. This situation can occur either by constitutional undercooling in the
case of alloy solidification, or by the fact that a certain amount of undercooling is
required to nucleate the solid from either the melt or the vapor. A classic example of the
latter is the formation of ice dendrites (snow flakes). Their intricate shapes have
fascinated scientists and philosophers alike, and the study of their formation is the
confluence of pure physics from the point of view of pattern formation and material
science whose interest is in the evolution of microstructure in alloys.

Camel, Favier, Dupuy, and Le Maguet (CENG, Grenoble) studied the formation of
dendrites in hypo- and hypereutectic compositions of the Al-Cu systems at very low
solidification velocities (1 micron/sec with a gradient of 30°C/cm) on the D-1 mission. In
the ground control experiment in which Al-24Wt%Cu hypoeutectic composition was
directionally solidified in the vertical stabilizing configuration (stable with respect to both
thermal and solutal gradients), considerable radial segregation was observed and the
interdendritic spacing ranged from 350 — 450 microns. This is much less than the 1400
microns expected from scaling laws based on higher solidification rates. The flight
sample showed no radial or longitudinal segregation and the dendrite spacings were very
close to the expected scaled value. Apparently, in normal gravity considerable solutal
convection occurs in the extended mushy zone resulting from the low solidification
velocity. Multiple cross sections taken from the large dendrites in the flight sample
allowed, for the first time, the reconstruction of an actual dendrite formed in an opaque
system. The resulting reconstruction provided valuable information on the secondary and
tertiary arm spacing and on the ripening of the dendrite arms.

The McCays (University of Tennessee Space Institute) and coworkers team used the

ammonia chloride-water system as a transparent metal analog to study the effect of
convection on the dendritic structure of castings on IML-1. The mixture was cooled from
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the bottom, representative of a mold placed on a chill block. The growing columnar
dendrites were observed holographically as heat was extracted from the system. The
dendrites in the ground control experiment grew only half as fast as those in the flight
experiment and the mushy zone (the region where the dendrites are growing, which
consist of solid dendrites and interdendritic fluid) was much more dense in the ground
control. Even though the system is thermally stable (hot over cold), the convective flows
along the stalks of the dendrites greatly influence the concentration field in the growth
region and must be considered in any attempt to model such a system.

When liquid metal is poured into a mold, columnar dendrites grow from the chilled
surface, into the melt. In most cases, it is desirable to have small equiaxed dendrites
throughout the final casting to form a fine-grained structure. In practice, this is
accomplished by adding innoculants to the melt in order to promote the nucleation of
small grains ahead of the solidification front. These grains will grow dendritically in all
directions, thus forming equiaxed dendrites. Dupouy, Camel, Botalla, Abadie, and Favier
(CEA, CEREM, Grenoble) investigated the transition from columnar to equiaxed growth
in by directionally solidifying Al-4Wt% Cu alloy with an Al-Ti-B grain refiner on the
LMS mission. A simple theory proposed by Hunt (Mater. Sci. Engr. 65 (1984) 75)
relates the transition to the undercooling, the thermal gradient, and the number of nuclei,
but ignores the effects of convection and the buildup of the solute boundary layer in front
of the advancing solidification front. The purpose of the space experiment is to decouple
the convection effects from the solute build up in order to develop corrections to the
theory. The experiments showed a continuous transition from a purely equiaxed to an
anisotropic microstructure and the transition departed significantly from the Hunt model.

Similarly, Sato (National Research Institute for Metals, Japan) used TiB, particles as a
grain refiner in a TiAl - based alloy on IML-2. The TiB2 particles all settled to the
bottom of the 1-g when it melted and the resulting structure consisted of columnar
dendrites. A uniformly distributed equiaxed grains resulted in the flight sample.

Glicksman and co workers at RPI carried out a series of precisely controlled dendritic
growth experiments on USMP-2,3, and 4 to investigate the fundamental theories of
dendrite growth. Instead of investigating dendritic growth in constitutionally
undercooled systems, these experiments observed the growth of dendrites in pure
transparent organic systems at undercoolings ranging from 0.05 to 2.0 K. This choice of
systems, succinonitrile for the first two experiments and pivalic acid for the third
experiment, allowed real time observations of the actual growth of the dendrites so that
precise measurements could be made of the growth rate and tip geometry in systems that
were analogs of metal solidification. Succinonitrile crystallizes in a body-centered cubic
structure and pivalic acid crystallizes in a face centered cubic structure. Both systems
have unusually low entropies of fusion, more typical of metals than of organics.

One of the governing factors in the growth of these thermal dendrites is the heat flow
from the dendrite to the surrounding melt. An exact solution the conductive heat flow
problem had been obtained by Ivantsov for a parabolic shaped dendrite which relates the
product of growth rate and tip radius to the undercooling. However, there seems to be no
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fundamental relationship between the tip radius R and the growth velocity V. The
question becomes, how does nature select a unique operating state? Experimental
observations of pure systems suggest that V RZis either a constant for a specific material,
or a weakly varying function of the undercooling. A large body of terrestrial data has
been taken on several systems, but convection effects, especially in the crucial region of
low undercoolings where the growth rate is comparable to the convective flow velocities,
has not been able to provide an adequate test of the selection rules governing this process.
This was the motivation behind this set of flight experiments.

The microgravity experiments show that convection increases the growth rate by a factor
of 2 for undercoolings less than 0.5 K, and are still significant for undercoolings up to 1.7
K. The measured product of tip radius and growth velocity in microgravity falls much
closer to the Ivantsov solution than the terrestrial data. The slight deviations maybe
attributed to the formation of side branches on the dendrites, possible wall effects from
the growth chamber, and the fact the observed shape of the dendrite tip is a slightly
different shape from the parabola assumed in the Ivantsov solution. Now that the heat
transfer away from the growing dendrite is properly accounted for, the physics of shape
selection can be approached with reliable data.

In addition to establishing the data required to under the fundamentals of dendritic
growth, the large number of highly detailed photographs of dendrites growing under
carefully controlled and well documented conditions are being shared with researchers at
other universities interested in studying other aspects of dendrite growth such as the side
arm growth rates and spacing.

Herlach, Barth and Holland-Moritz (DLR, Koln) with Flemings and Matson (MIT) used
the TEMPUS facility on MSL-1R to study dendrite formation in undercooled Ni and Ni-
0.6At% Cu. Discrepancies between observed dendrite growth velocity and predictions
using the Boettinger, Coriell, and Trivedi (BCT) model (in Rapid Solidification
Processing, Principles and Technologies IV Ed. Mehrabian and Parrish, Claitor’s, Baton
Rouge 1988) were believe to be due to convection, especially at low undercoolings where
the growth velocity id on the order of the flow velocities. Surprisingly, the flight results
did not show any significant difference .

Coarsening

Coarsening is of major importance in the evolution of microstructure of alloys,
particularly dispersion hardened alloys in which the added strength provided by the
dispersed phase declines rapidly if the particles grow past a critical size. Coarsening is
driven by the excess interfacial energy in a finely dispersed second phase, which could
be lowered if fewer larger particles were present. The melting point of a small particle is
Jower than a larger particle of the same composition (Gibbs-Thompson effect) so the
smaller particles dissolve to feed the growth of larger particles (the rich get richer at the
expense of the poor). The process was first recognized by Ostwald and is known as
Ostwald ripening. The mathematical details were worked out independently by Landau
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and Slyozov and by Wagner and is known as the LSW theory. One key result of the
LSW theory is that the cube of the average particle radius varies directly with time
according to

R(t)* - R(0)® = K gy t

Where R(0) is the initial average radius and is a constant which contains the relevant
material properties such as the interfacial energy and diffusion coefficient. However, the
classical LSW analysis is based on a mean field theory that ignores the finite volume of
the dispersed phase. Various attempts have been made to formulate a correction for finite
volume, which give widely varying results. However, all of the corrections retain the R?
relationship and differ only in how the K(¢) / K,y varies with volume fraction, ¢.
Furthermore, there has not yet been a definitive test to differentiate between these various
theories.

On S1-1, Kneissl (Montanuniversitat Leoben, Austria) and Fischmeister (Max Planck
Institut fur Metallforschung, Stutgart) took a different approach to the study of
monotectic systems. Instead of cooling from above the consolute temperature into the
immiscible region in microgravity, they prepared samples of Zn with small volume
fractions of Pb on Earth by rapid quenching. These were heated into the two-liquid phase
region in space, thus avoiding the nucleation and possibly the critical wetting that occurs
when cooling through the immiscible region. The massive phase separation seen by most
of the other experiments with hypermonotectic systems was avoided and they were able
to study the coarsening of the dispersed particles. Kneissl and Fischmeister observed
considerable coarsening of the dispersed phase. The distribution of the smaller particles
resembled the classical LSW theory, but there were more larger particles than the theory
predicted. The mechanism for producing these larger particles was not clear. A
substantial increase in coarsening rate with increasing volume fraction was observed, but
scatter was too large to make a definitive conclusion. A similar experiment was
conducted on D-1 by Ratke, Theiringer, and Fischmeister (Max Planck Institut fur
Metallforschung, Stutgart) using the Al-In system. However, technical problems
prevented useful data return.

Alkemper, Snyder and Voorhees (Northwestern University) attempted such a definitive
experiment on the MSL-1R flight. They dispersed 10 micron Sn particles in a Pd-Sn
eutectic alloy and heated the samples at 2°C above the eutectic temperature for a
predetermined period of tome and then quench to room temperature. The sample were
later cut into sections and the particle size distribution measured with a digital scanning
camera with a microscope objective. The lighter Sn particles all floated to the top in the
ground control sample, as would be expected. The flight sample yielded K-values of
2.47, 3.3, and 6.9 micron®/s respectively for volume fractions of 10%, 20%, and 70%.
Difficulty was encountered, however, in determining the K, 5w, corresponding to 0
volume fraction. Voorhees used the grain-grove technique developed by Hardy at NITS
to determine the interfacial energy between the solid and the melt and obtains K, sy =
1.01 microns®/sec. The resulting values for K(¢) / K sy exceed the predictions of all of
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the theories by a factor of 2. The measurements of the physical constants used to obtain
K, are being reviewed.

Liquid Phase Sintering

Liquid phase sintering (LPS) is a widely used process for forming composites containing
refractory particles such as tungsten, Re, or various carbides in a metal matrix. Sintered
products include cutting tools, bearings, contact points, and other irregularly shaped parts
where it is desirable to combine extreme hardness with the toughness and thermal or
clectrical conduction of the metal matrix. The refractory particles are combined with the
metal matrix powder and isostatically pressed and heated to above the melting point of
the host phase. If proper attention is paid to the wettability of the refractory particles, the
molten host metal will infiltrate between the grains of the solid particles and envelop
them. There are some obvious gravity effects because of the large difference in densities
often encountered between particle and host phase. Consequently, this restricts the
process to large volume fractions of the solid phase since the solid particles will
essentially have to support themselves during the process. Even under these
circumstances, there are differences in the particle size and morphology between the top
and bottom of the specimen due to the gravity-imposed hydrostatic pressure.

Kohara (Science Institute of Tokyo) conducted liquid phase sintering experiments on SL-
J using W in 3.5 - 30 Wt% Ni. The powders were compressed into cylinders, placed in
BN crucibles and heated to 1500°C for 60-300 minutes. The samples with low volume
fractions on the matrix material retained their shapes during the process, but those
samples in which the matrix material could form a continuous liquid layer over the outer
surface changed to a spherical shape in microgravity.

German, Upadhyaya, and Tacocca at Penn. State University conducted liquid phase
sintering experiments on SL-J, IML-2 and on the MSL-!R missions using W particles in a
Fe-Ni matrix. On IML-2, the samples contained from 78 — 98 Wt% W in 5 Wt%
increments. Liquid-solid segregation did not occur in the flight sample, but the lack of
hydrostatic pressure prevented the sample from achieving 100% densification, as it
would have in normal gravity. Instead, gas pores formed which were stable and became
a discrete phase within the microstructure. Many of the pores had large distorted shapes
as they interconnected W particles. Systems that distort in 1-g also distort in micro-g,
except instead of attaining the characteristic elephant foot shape, the micro-g samples
tend to reshape into spheres. This would indicate that viscous flows driven by surface
tension can be significant. The major results from this series of experiments are universal
models for coarsening, slumping and distortion, and grain agglomeration.

Thermosolutal Convection
In dilute systems (systems in which the alloying component is small enough so that its
presence does not significantly affect the density of the melt), it is possible to eliminate

solute redistribution on a global scale in normal gravity by directionally solidifying the
sample in a vertical stabilizing configuration (hot over cold). Since heat must be applied
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through the walls, there will still be some convection from the horizontal thermal
gradients, but these flows will primarily affect the radial distribution of solute in the
solid. Non-dilute systems can be stabilized even more if the rejected component is
denser than the bulk melt. However, if the rejected component is less dense, it will tend
to rise and upset the stabilizing thermal gradient. Coriell showed that such a system
would be unstable even if the thermal gradient were high enough to provide a monotonic
decrease in density along the vertical direction. This comes about because solute
diffusion is much slower than thermal diffusion so if a parcel of fluid is displaced
vertically, it will equilibrate thermally with its surroundings faster than compositionally,
find itself still lighter than its surroundings, and will continue to rise. This is known as
the double-diffusive problem and received much attention from oceanographers because
of the phenomena of salt-fingering. The surface is warmed by the sun which tend to
thermally stabilize the system, but evaporation increases the salt concentration at the
surface, which tends to destabilize the system and produce overturning convection.

Coriell’s analysis also showed that such systems could even be unstable under
microgravity conditions if the concentration of solute more than a few percent. This
theory was tested by Rex and Sahm (Gietzrei Institut der RWTH, Aachen). On the D-1
mission, they directionally solidified an Al -3 wt%Mg alloy at a growth rate of
~4mm/min under a thermal gradient of 13K/mm. This should place the sample well
within the region of stability predicted by Coriell. Indeed, the space sample solidified
with a plane front and had a longitudinal compositional profile consistent with purely
diffusion-controlled transport. The experiment was repeated on D-2 by Stehle and Rex
with Cu-30.1Wt%Mn. The growth rate was varied from ~1.2 microns/sec, which
corresponds to the stability limit estimated by Coriell for 10-4 g, to 16 microns/sec. The
composition of the flight samples was consistent with diffusion controlled growth
throughout.

Unfortunately, the above experiments lie well within the stability regime, so they don’t
really test the limits of stability. Leonartz (Ingenieurbuero, Aachen) directionally
solidified the transparent . succinonitrile-0.45Wt% acetone and succinonitrile-0.33 Wt%
ethanol systems on a rotating centrifuge (NIZEMI) facility on the IML-2 flight. In this
manner, the g-level could be varied from 0.001 to 1 g by changing the rotation speed of
the centrifuge. The observed thermo-solutal convective velocities were well under the
solidification velocity for g-levels up to 0.01 g, thus no effect on interface shape could be
observed. Coriell’s predictions indicated the thermosolutal stability should occur at
0.001g for the succinonitrile-0.45Wt% acetone system for a thermal gradient of 1 K/mm
and solidification velocities less than 2 microns/s. Instead, the instability was observed at
0.1g. Coriell’s theory considered the most unstable wavelengths in an infinite surface. If
this wavelength happens to be longer than the width of the chamber, wall effects will
limit the instability, which appears to be the case in this experiment.

Monotectic Systems

As discussed previously, some metallic systems tend to be immiscible in the solid phase
and form eutectic structures when they solidify. Other systems also have regions of
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immiscibility in the melt. Atoms of one component generally prefer to be next to like
atoms, just as molecules of water in an oil and water mixture prefer to be next to water
molecules and oil molecules prefer to be next to oil molecules. Such systems are said to
have positive heat of mixing, meaning that the internal energy of the system is higher in
the mixed state than it would be if the components were separated. If this were the
complete story, such systems would always separate, just as oil and water tend to do.

The other factor is the entropy of mixing. Entropy is related to the number of possible
states available to the system. If a deck of cards is cut in half, there are only a few ways
the deck could be arranged so that all the black cards were in one stack and all the red
cards in the other. On the contrary, there are many more ways the deck could be
arranged to find the black and red cards mixed. Thus we say the mixed state is more
probable, and if we were playing with a randomly shuffled deck, we would almost always
expect to find some degree of mixing of the cards.

It was the genius of J. Willard Gibbs to recognize that a system reaches equilibrium, not
when the configurational energy (enthalpy) is a minimum, but when enthalpy minus the
product of entropy and temperature is a minimum. This combination is called the Gibbs
free energy, of sometimes just the free energy and it is this function that determines when
an equilibrium phase transformation takes place. For example, atoms are more tightly
bound together in a solid than in a liquid, so the solid has a lower (more negative) internal
energy than the melt. However, since atoms are free to move around in a melt, the melt
has higher entropy. When the temperature is raised to the point were the product of
entropy and temperature overcomes the difference in internal energy between the solid
and liquid, the liquid phase will have the lowest free energy and the system melts.

Similarly, in a mixture of atoms with a positive heat of mixing, there will be a
temperature above which, the entropy of mixing term overcomes the positive heat of
mixing and a homogeneous solution will result. The lowest temperature at which this
condition is met for all compositions in the immiscible region is called the critical
consolute temperature. (Theoretically, there should be a temperature above which oil and
water should completely mix, but this is above the boiling point of water.) If this critical
consolute temperature happens to fall below the equilibrium freezing point, there will be
no liquid phase immiscibility.

The critical consolute temperature corresponds to an inflection point in the free energy
vs. composition curve. At temperatures below the critical consolute temperature, the free
energy curves will have two minima and two inflection points. The binodal or two-liquid
phase region is mapped out by the locus of points where a mutual tangent exists between
these two regions of the free energy curve. The inflection points in the free energy
curves define a region called the spinodal. Between the binodal curve and the spinodal
curve there exists a region of metastability, meaning an energy barrier must be overcome
in order to form the second liquid phase, just as an energy barrier must be overcome in
order to form a solid from a liquid. Just as in solidification, this energy may be overcome
heterogeneously by forming a nucleus at a low energy site such as the container wall, or
homogeneously by forming a nucleus from an undercooled melt. However, in the
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spinodal region there is no barrier to forming the second liquid phase. If the melt is
undercooled into this region before nucleation occurs, it will spontaneously decompose
into the two liquid phases. This process is known as spinodal decomposition.

When a region of liquid phase immiscibility exists, it does so only over a limited range of
compositions. There will be composition at which the melt will remain homogeneous
until it forms a solid rich in the component with the highest freezing point and a liquid
rich in the component with the lower freezing point. The temperature and composition at
which these three phases can coexist is an invariant point, similar to the eutectic reaction
in which a melt of homogeneous composition decomposes into two solids of different
composition (L <> S1 + S2) except, in this case, L1 <> S + L2. This is called a
monotectic reaction and systems in which this reaction occurs are called monotectics.
Compositions richer than the monotectic composition in the higher melting point
component are called hypomonotectics and can be solidified from the melt in the same
manner as hypoeutectics. It is also possible to solidify the monotectic composition if care
is taken to prevent convective flows from sweeping the second liquid phase away from
the solidification front. But any attempt to solidify a hypermonotectic composition by
cooling the melt through the two-liquid phase region will result in a highly segregated
solid because the two liquid phases will always have different densities and will separate
by sedimentation before the solid can be formed by equilibrium solidification. (It is
possible to form a fairly homogeneous solid of hypermonotectic composition by various
rapid quenching processes in which solidification takes place before the two liquid phases
can separate, but this would generally require that the sample be thin so that heat can be
removed rapidly.

There are a large number of binary metallic systems that exhibit monotectic behavior and
attempts to form alloys of these systems was one of the first quests of the microgravity
program. A mixture of krytox oil and water was shown to remain mixed for several hours
in a simple demonstration experiment on Skylab, so it was known that in the absence of
sedimentation such a mixture could be held in a metastable state more-or-less
indefinitely. But, much to the surprise of these early experimenters, almost complete
phase separation was observed in every attempt to solidify a monotectic system by
cooling a melt through the two-liquid phase region, even when the process was carried
out in a virtually weightless environment. Generally, one of the phases was found to be
enveloped by the other phase, much like the yolk of an egg. This was quite different from
the ground based results in which the denser phase was always found at the bottom of the
crucible. Clearly, some interfacial effects are operating to cause phase separation that
had obscured by gravity-driven sedimentation.

As the melt is cooled into the metastable two-liquid phase region, drops of the minority
phase may nucleate homogeneously within majority or host phase. As heat is extracted
from the system, these droplets will be subjected to a thermal gradient. Since the
interfacial energy between the two fluids is temperature dependent, the difference in
temperature across the droplet will result in an unbalanced force along its surface. The
resulting convective flows, sometimes called Marangoni convection, will drive the
droplet toward the region of higher temperature. According to a theory developed by
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Young, Goldstein, and Bloch, the velocity of a droplet propelled by this mechanism is
directly related to the droplet size. Thus as droplets overtake one another and become
larger, they move faster and are able to overtake smaller droplets and become larger still.
This mechanism could certainly explain how the minority phase could coalesce in the last
region to solidify.

In the meantime, Cahn developed a theory of critical wetting quite independently of the
microgravity experiments on monotectic systems. According to Cahn’s theory, there will
be a region of temperature below and extending to the critical consolute temperature over
which one of the two liquid phases will perfectly wet the container wall. When this
occurs, there will be no barrier to this phase nucleating and spreading over the container
wall, thereby forcing the other phase away from the wall.

A TEXUS rocket experiment by Ahlborn (Universitat Hamburg)and Lohberg (TU
Berlin), using Al 10Wt% In in an AL, O, crucible which is preferentially wet by the In-
rich phase, found most of the indium-rich minority phase in contact with the crucible and
surrounding the aluminum-rich majority phase. Some small amount of In-rich phase was
also found near the center of the Al-rich region, presumably driven there by Marangoni
convection. Potard (CEA-CENG, Grenoble), in a separate rocket experiment used the
same components in a SiC crucible, which is wet by the Al-rich phase. He found the In-
rich minority phase was completely surrounded by the Al-rich phase. Gelles and
Markworth (Gelles Associates, Columbus, Ohio) flew Al-90Wt% In in an alumina
crucible on OSTA-2 and found a few relatively large LI droplets with many smaller ones
distributed through the In-rich matrix. These smaller droplets were adjacent to, but
generally not touching, the crucible wall. These experiments demonstrate the critical
wetting and spreading that occurs according to Cahn’s theory if the minority phase wets
the crucible walls in preference to the majority phase.

On Spacelab 1 and D-1, Ahlborn and Lohberg (Lehrstuhl Fur Ingenieurwissenschaften
Der Universitat Hamburg, demonstrated, with a variety of systems including Zn-Bi, Zn-
Pb, Zn-Bi-Pb, and Al-Pb, that the minority phase was always transported to the hottest
portion of the sample during the solidification process, presumably by Marangoni-
induced droplet motion.

Kamio (Tokyo Institute of Technology) directionally solidified Cu-Pb at the monotectic
composition. The resulting microstructure consisted of irregularly shaped Pb rods in a
Cu matrix; however, a layer of Pb above the quenched growth front suggest that growth
may not have taken place exactly at the monotectic composition. The ground control
sample showed similar microstructure. A hypermonotectic Al-In sample was also flown,
but a leak in the ampoule prevented any results from being obtained.

Togano et al. (National Research Inst. For Metals, Tokyo) succeeded in casting a ternary
monotectic system on SL-J. Compositions of 1, 2, and 3 At% each of Pb and Bi was
contained in an Al matrix. The starting material was prepared by chill casting ingots with
the specified compositions. These were heated to 1580K in ten minutes, held for 34
minutes, and quenched to 873K in 70 seconds. The flight samples had a reasonably well
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dispersed array of (Pb,Bi) particles with 90% under 50 microns, although some voids
were also present. Ground control samples had almost complete phase separation, as
would be expected. The flight samples were then sheathed in Cu and drawn into wires of
0.35 mm diameter. This resulted in a Type 2 superconductor in the form of a dispersion
of (Pb,Bi) fibers in an Al matrix. The superconducting transition was 8.7K, the critical
field was 1.9 T, and the critical current density was S000A/cm?®,

On the D-2 mission, Sangriorgi, Muolo, Ferrari, Passerone, (Insstituto di Chimica Fisica
Applicata dei Materiali, Genoa) and Rossitto (ESA Astronaut Center, Koln) investigated
the influence of crucible wetting on the phase distribution when the Cu-Pb monotectic
system solidified. Cu-rich and Pb-rich melts were solidified in graphite, sapphire
(Al,0,), and boron nitride (BN) crucibles. Care was taken to reduce the gradients in the
system during cooling to less than 0.4K/cm to reduce Marangoni flows. When the Pb-
rich phase was the majority phase, it preferentially wet the sapphire crucible and
surrounded the Cu-rich phase, which is consistent with Potard’s results. However, when
the Cu-rich phase was the majority phase, no preferential wetting of the graphite or the
BN crucible was observed and a fairly regular structure resulted. This seems inconsistent
with Cahn’s prediction that one of the two phases should have become perfectly wetting
and spread over the wall of the crucible. However, the temperature at which the Cu-rich
composition enters the two-liquid phase region may have been sufficiently lower than the
critical consolute temperature so that critical wetting may have been avoided.

An attempt was made to directionally solidify hypomonotectic Al-In by Andrews (U.
Alabama, Birmingham) and Coriell (NIST) on the LMS mission. The flight sample
contained a number of large voids, apparently from gas trapped or generated during the
process. Care was taken to analyze the trapped gas in the ampoule and it was determined
that the gas was mostly N, with some H, and CO,.

On a follow-on experiment on USMP-4, Andrews elected to work with a transparent
monotectic system, succinonitrile-glycerol, to elucidate the wetting and spreading
characteristics of the minority phase. Test cells consisted of a sandwich of microscope
slides with a thin, 0.13 mm, teflon gasket between them. The cells were heated to 90°C
to homogenize the melt (critical consolute temperature is 83°C). They are then placed on
a back lighted table for viewing with a video equipped stereo microscope. It was
anticipated that succinonitrile-rich droplets would preferentially wet the teflon gasket, so
that if succinonitrile happens to be the minority phase, the system would be unstable
against critical wetting. If succinonitrile is the majority phase, the system should be
stable and a uniform dispersion of glycerol droplets in the succinonitrile host phase
should occur. For compositions from 70 to 55Wt% glycerol, droplets of glycerol formed
on or near the teflon gasket, but did not spread along it. Contact angles ranged 30 to 80°.
However, at 45-50Wt% glycerol, a film of glycerol was observed to have formed along
the teflon gasket, indicating perfect wetting. Below 45 W% glycerol (succinonitrile is
the majority phase), stable dispersions of glycerol droplets were seen as expected. At
15Wt% glycerol, no glycerol droplets were seen near the interface as if they had
somehow been repelled by the interface.
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One of the applications of the research on monotectic systems is a strip casting technique
developed by Metallgesellschaft, Frankfort that balances the sedimentation of the
droplets with Marangoni convection. This process can produce endless strips of finely
dispersed Pb or Bi in an Al or Al +5W1t%Si alloy. Aluminum alloys with uniformly
dispersed phases of Pb or Bi are presently being investigated as candidates for advanced
bearing for automobile engines. The present strip casting process can provide a dispersed
phase up to 7 Wt% Bi, but a higher percentage would be desirable. The process has been
extensively modeled, but more information is needed on the Marangoni flows and on the
resulting coalescence of the droplets. Ratke, Prinz, and Ahlborn designed an experiment
for the D-2 mission to obtain the data needed to improve the model. A molten zone is
passed through a strip-cast sample freeing the Bi droplets when the monotectic
temperature is reached. The droplets are propelled toward the higher temperature region
by thermal Marangoni convection where they begin to dissolve, creating a solutal
gradient, which also influences the Marangoni convection. As the droplets move
forward, a backstreaming flow is produced in the host material, which also changes the
local composition. As the temperature is reduced at the cold end of the zone, the droplets
the Marangoni-induced flow is reversed and the droplets tend to coalesce before they are
incorporated into the dendritically solidifying Al-Si host material.

This highly complex process has been modeled computationally, but present
computational capability can only track some 5000 droplets, whereas millions of droplets
are involved in the actual process. Measurement of the droplet distribution in the final
solid enables the extraction of important physical parameters such as the interfacial
energy as a function of composition, and provides information on the importance of
droplet coalescence from the Marangoni-induced droplet motion.

One problem with the solidification experiment had always been the fact that the
experimenters could only see the final result and had to theorize what sequence of events
must have occurred to reach the final state. For example, they had no way of knowing if
the melt decomposed spontaneously, or if droplets formed and then coalesced, or if
coalescence occurred during the solidification by particle pushing by the solidification
front.

Otto (DLR, Koln) tried to resolve this problem using the MAUS facility on the orbital
platform SPAS-01 on the OSTA-2 mission (STS-7). Using a small X-ray source, he took
shadowgraphs of the decomposition of a Ga-Hg mixture as it was cooled into the two-
liquid phase region at different cooling rates. He was able to observe individual droplets
after they grew to 0.2 mm in diameter. The droplets did not appear to be homogeneously
distributed, but may have nucleated heterogeneously on low energy sites. No particle
motion was observed, either from Marangoni convection, or from the residual
acceleration. This is a fairly good indication that the droplets either nucleated on or stuck
to the teflon container walls.

On D-1 same mission, Ecker attempted to observe the directional solidification of the

transparent succinonitrile-ethanol system using holography. Unfortunately, the film
transport on the Hasselblad camera failed and the data was lost.
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Similarly Braun, Ikier, Klein, Schmitz, Wanders (DLR< Koln) and Woermann (U. Koln)
investigated phase separation in immiscible liquid systems using transparent analogs to
metallic systems on the D-2 mission. A mixture of butoxyethenol and water has a region
of immiscibility that is a function of pressure. The sample is stabilized at 18 bars at a
temperature just below the two-liquid phase region and then the pressure is released to 1
bar. Thus the region of immiscibility is entered isothermally with no mechanical mixing.
The decomposition and droplet growth was monitored holographically. Initially the
droplets grew to an equilibrium diameter of approximately 3 microns by diffusion. They
remained at this diameter for 1 hour with a slight increase in diameter due to Ostwald
ripening, and then showed a rapid increase in diameter due to Marangoni convection
when the thermostat was turned off and thermal gradients developed.

Particle/Solidification Front Interactions

Small ceramic particles are sometimes added to metals to block the motion of
dislocations (dispersion hardening) or for flux pinning in type II superconductors. In the
preparation of composite materials, it is important to know how such particles interact
with the solidification front. If the particle is not wetted by the melt, intermolecular
forces will tend to repel the particle. These forces are pitted against inertia and a drag
force that tend to engulf the particle. There have been a number of theoretical attempts
to model this process and it is generally accepted that, for a particular system, there is a
critical velocity, below which the particle will be pushed ahead of the solidification front,
and above which, it will be engulfed by the advancing solid. Buoyancy and convective
flows complicate the picture in normal gravity and it is important to be able to separate
these effects from the more fundamental interactions that take place at the solidification
front.

Klein (DLR, Koln) attempted to measure pushing of 40 micron Pb spheres and air bubble
in a transparent CsCl melt during the OSTA -2 mission. A gradient of 65 k/cm was
established in special furnace with sapphire windows which allowed the advancing
solidification front to be photographed. Initially the Pb drops were pushed by a
solidification front moving at 4 microns/sec. Interestingly, the bubbles did not move in
the direction of the thermal gradient, as would be expected from Marangoni convection,
but were overtaken by the solidification front (they may have been stuck on the walls).
When the bubbles were overtaken by the solidification front, they were not engulfed, but
instead formed channels into the solid. Eventually, the front was disturbed by the
bubbles to the point that meaningful data could no longer be extracted.

Potard and Morgand (CEA-CENG, Grenoble) attempted to use a vapor-emulsion
technique on SL-1 to obtain a uniform dispersion of bubbles in a directionally solidified
Al-Zn ingot. The concentration of Zn ranged from 1-5At%. It was expected that the
high vapor pressure of Zn would form a uniform distribution of gas bubbles in the final
solid. For reasons that are not clear, the Al failed to wet the SiC crucible and the
expected results were not achieved.
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Langbein and Roth (then at Battelle Institute Frankfurt, Germany) investigated the
interaction of solid particles with an advancing solidification interface on D-1. A copper
sample containing 1 vol.% molybdenum particles (2 to 4 microns in diameter) was placed
in an alumina container. The sample was directionally solidified with a decreasing rate.
Bubble also formed as the sample was directionally solidified. In the lower region
(highest solidification speed) the Mo particles were aligned along boundaries of cellular
growth. Some of the Mo particles were captured and transported by the bubbles. In
some cases, Mo crystals as large as 20 microns had grown inside the bubbles. Other
bubbles had filled with Cu, while others had remained as voids. Some of these voids
remained spherical, while others were pear-shaped with their tails pointing toward the hot
end.

Poetschke and Rogge (Krupp Research Institute/Krupp Pulvermetall GmbH, Essen) conducted a
similar experiment on D-1. They used 1-20 micron alumina particles as well as 1-4 micron Cu
particles in a Cu matrix. The alumina particles formed aggregates they were pushed by the planar
solidification front. The Mo particles were strung along cellular boundaries as was the case
reported by Langbein and Roth

On the LMS mission, Stefanescu and co-workers at the University of Alabama sought to
examine particle engulfment and pushing in the case of a planar solidification front
intersecting spherical, non-wetting particles. He chose pure Al for the host metal and
zirconia particles, which were found to non-wetting at the melting point of Al. The
starting material was prepared by casting ingots of Al with a small volume fraction of
500 micron zirconia particles. He used the AGHF to directionally solidify these ingots at
different rates. Preliminary results indicates that the pushing-to-engulfment transition
occurs between 1.9 and 2.4 microns/sec in the ground based experiments and between 0.5
to 1.0 microns/sec for the flight samples. Analysis is still in progress to ascertain whether
wetting actually occurred in these samples. Stefanescu attributes the difference between
the ground and flight results to convective flows near the solidification interface ,which
can impart a roll to the particles giving them a slight lift. This effect was seenin a
transparent analog experiment using succinonitrile as a metal model.

Stefanescu repeated his experiment on USMP-4 using transparent systems so that the
actual pushing and engulfment process could be observed. The choice of host materials
was succinonitrile, a non-faceting material, and biphenyl, a faceting material.
Polystyrene beads of varying diameters were used with the sucinonitrile and glass beads
were used with the biphenyl. The polystyrene beads had much lower thermal
conductivity than the succinonitrile host, whereas the glass beads had much higher
conductivity than their host. Several unexpected phenomena were observed. The glass
beads tended to move along the surface of the biphenyl in the flight experiment, which
was thought to be a result of the anisotropy of the faceted interface. Also the interface
began to show signs of a cellular structure toward the end of the experiment and beads
that had previously been pushed were engulfed. It was not clear if this was the result of a
build-up of solute (even though extreme care had been taken to purify the material
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beforehand) or if the thermal gradient was somewhat lower at the end of the cuvette. As
a result, only the data taken in the first 5 mm were considered.

Again the critical velocity was found to be higher on the ground than in space. This was
attributed to the Saffman force resulting from convective flows that tends to lift the
particle away from the interface. A theory developed by Shangguan, Ahuja, and
Stefanescu predicts the critical velocity to be given by

. Ay a? 12
¢ \3nKR

where Ay is the difference between the particle-liquid and the particle-solid interfacial
energies, a is the atomic spacing, 1 is the kinematic viscosity, K is the ratio of particle to
liquid thermal conductivity, and R is the particle radius. This model was validated for the
case of zirconia particles being pushed by Al in the LMS experiment and is within the
experimental error of the lower bound for the sucinonitrile-polystyrene particles on
UMP-4. However, the model predictions are much lower than the experimental data for

the biphenyl — glass system. The anisotropy of the interface as well as the motion of the
particles along the interface may contribute to this discrepancy.

On the LMS mission, Hecht and Rex (ACCESS, Aachen) investigated the pushing and
entrapment of 13 micron Al,O; particles on a commercial 2014 Al alloy. They observed
pushing during the plane front transient which was consistent with the model prediction s
of Potschke and Rogge. However, at the higher solidification velocity when the front
became dendritic, they found particles trapped in the interdendritic fluid between the
secondary dendrite arms and acknowledged they difficulty of extending theories based on
idealized conditions to “real-world” problems.

Froyen and Deruyttere (Katholieke Universitat Leuven) formed a number of metal matrix
composites on the SL-1 mission. Micron sized SiC and Al,O, particles were
mechanically mixed with Al powder and hot extruded into bars. The samples were then
coated with an AL,O, skin and melted and solidified in the isothermal furnace. A more
uniform distribution of particles was obtained in the flight samples and the microhardness
was more uniform, a result the Investigators attribute to the reduced convection and
sedimentation. Additional experiments were conducted on D-2 using a Cu matrix in a
graphite crucible. Again the AL,O, particles were uniformly dispersed and the flight
sample had improved hardness. The SiC particles decomposed, the Si forming a solid
solution with the Cu while the graphite was expelled. The W and Mo particle oxidized
near the presence of gas bubbles and were not uniformly distributed.

Muramatsu and Dan (National Research Institute for Metals, Japan) reported that they
obtained uniform dispersions of TiC in Ni by heating specimens prepared by powder
techniques in the Large Isothermal Furnace during the SL-J mission. No further details
were given.
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Also on SL-J, Suzuki (Hokkaido University) with Miura and Mishima (Tokyo Institute of
Technology) coated short carbon fibers with Al-1 At% In and heated the aggregate to
700°C for 10 minutes to form an ultra-low density (10% that of Al) composite material
with high stiffness, suitable for on-orbit fabrication of structural components. They did
find some unexpected local coagulations of Al in regions where the coatings on the fibers
was drawn away. This led to a somewhat lower compressional strength of the composite
than had been expected.

One of the more important “real world” problems has to do with attempts to dispersion
harden superalloy single crystal gas turbine blades by incorporating very small
(submicron) oxide particles during the growth process in order to increase their creep
resistance. A uniform dispersion can be achieved by powder metallurgical techniques,
which can then be densified by hot isostatic pressing (HIP). But when the blade is melted
so that it can be directionally solidified into a single crystal, the particles tend to
agglomerate and are not uniformly incorporated into the superalloy matrix. The
solidification velocities required to achieve plane front solidification are generally below
the critical velocity for engulfment of such small particles. At higher solidification, the
particles tend to be pushed laterally by the dendrites and wind up being clumped together,
trapped in the last-to-freeze interdendritic fluid. This problem prompted several flight
experiments by industrial firms trying to sort out gravitational effects from non-
gravitational effects that remain as barriers to developing this process.

One group of experiments focused on the use of a thin oxide skin to replace the ceramic moulds
used to form the turbine blades. It was hoped that in the absence of hydrostatic pressure, a thin skin
could retain the shape of the blade during the directional solidification process. Eliminating the
heat transfer through the mould would allow a much sharper thermal gradient to be applied during
the directional process, which helps stabilize the growth front at higher solidification velocities.
One of the major difficulties had to do with keeping the skin intact during the volume changes
involved during the melting and solidification process.

The use of “skin technology” was first demonstrated on Spacelab-1 by Luyendijk, Nieswaag, and
Alsem (Delft University) who directionally solidified a gray cast iron ingot with a 50 micron Al,0,
skin. Gray cast iron actually shrinks on melting so the alumina skin did not have to withstand a
volume expansion from melting. In fact the melt separated into two parts during the process. The
skin remained intact during the process, although some micro-cracks were observed. Small iron
droplets were found along the outer surface of the skin. It was speculated that they formed by
condensation from the vapor. A similar experiment was flown on D-1 by Nieswaag and Sprenger
(MAN Technologie AG) with the objective of determining the diffusion of sulfur in the cast iron.
Again the skin kept its shape with only a few drop that squeezed through the pores, but it was not
clear if free surface existed near the thermocouple groves. Unfortunately, problems with the
translation mechanism prevented an accurate assessment of the diffusion of the sulfur.

On the D-2 mission Amende (MAN Technologie AG, Munchen) solidified a cast iron rod in which
portions were alloyed with different compositions of Cr and Si. The rod was coated with a thin skin
of MgO-stabilized zirconia. The thermal expansions of the alloys were twice that of the zirconia
skin. The objectives were to see in the ceramic skin could accommodate the alloys during melting
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and resolidification and to see if any of the alloys reacted with the skin. The skin did successfully
contain the melt, although the portion containing the Cr alloy detached from the remainder of the
rod. It was speculated that the skin was preferentially wetted by the Cr alloy and that the interfacial
tension was responsible for the separation of this portion.

Barbieri and Patnelli (Universita di Bologna) with Gondi and Montanari (Universita di Roma)
investigated a variety of composites, some using powder Ag-Cu as the eutectic composition and
others using powder Al as the matrix, some with Al O, film coating, some with Ni coating, and
others with no coating. Some samples contained micron-sized Al,O; particles, while others were
compacted to 85% fractional density so that bubbles would serve as the dispersed phase. Generally,
the Al,O, coatings retained their shape during solidification, although some leakage was observed.
The lamella spacing in the micro-g eutectic samples were twice as large as the 1-g counterparts,
which was attributed to a slower cooling rate resulting from less thermal contact in the low-g case.
Most the most part, the bubbles were swept by the solidification front to phase and grain
boundaries. The oxide particles tended to aggregate in both space and ground control samples,
although the aggregates appeared to be more uniformly distributed in the space samples.

Confinement of the melt and shape retention in a superalloy was successfully demonstrated on the
D-1 mission by Sprenger (MAN Technologie AG), using a gamma/gamma prime-alpha, Ni/Ni;Al-
Moalloy coated with an 80 micron thick yttria-stabilized zirconia skins that had been applied by
plasma spraying. (A similar experiment was attempted on SL-1, but could not be run because of
technical difficulties.) Volume expansion was successfully compensated for by a small hole drilled
into the end of the sample. Shape was maintained through the cylindrical sample and into the
flattened region near the end. There were no holes or pores in the sample and no evidence of
Marangoni convection, which indicated that the melt had remained in contact with the skin.
Directional solidification of this alloy produces a regular arrangement of Mo fibers contained
within a Ni/Ni,Al (gamma/gamma prime) matrix. The flight sample exhibited a carbide phase not
seen in earth-processed samples. It was suggested that convective flows may transport the carbon
away from the solidification front, thus preventing this phase from forming during processing in
normal gravity.

On D-2, Amende and Holl (MAN Technologie AG) attempted to melt and resolidify actual gas
turbine blades that had been formed by powder techniques and coated with a 150 micron yttria-
stabilized zirconia skin. The blade material was the Ni-base CMSX6 superalloy with 0.5Wt%
50nm AlO, particles. The coating remained intact, but the evolution of the gas trapped in the pores
of the pressed powder sample caused swelling of the oxide skin and the loss of shape.

Busse (ACCECC e.V.) along with Deuerler and Poetschke (Krupp) investigated the gravitational
influence on the aggregation of submicron Al,O; powders on the D-2 mission. It had originally
been speculated that such powders tend to agglomerate because they were not wet by their metallic
host. If the metal melt did not penetrate the region between two touching particles, London-van der
Waals forces would cause the particles to clump together. However, preflight ground based tests
revealed that the particles tended to clump whether or not they were wet by the molten . Further, it
was found that the particles tended to clump into micron-sized spherical clusters by Brownian
motion as soon as the CMSX-6 superalloy matrix melted. These clusters they tended to form
chains on the order o 10 microns long during the solidification process . The chains of clustered
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particles became trapped in the interdendritic fluid where they tended to be aligned by the
dendrites. The only significant difference between the flight and ground samples were a slight
increase in the size of the clusters and length of the chains in the ground control experiments,
indicating that gravity had little influence on the agglomeration process.

Crystal Growth Experiments

Semiconductors as a class of materials can include semi-metals, ceramics, and polymers.
They are characterized by the fact that they have a small energy gap (less than a few
electron volts) between their valence band and their conduction band. Because of this
small energy gap, they can be easily manipulated to either conduct or not conduct
electricity, a property that provides the means for modern electronics. Unlike most
metals, in which the current is carried by electrons, conduction in semiconductors take
place through the action of both electrons in the conduction band and holes left by the
electrons in the valence band. These materials can also absorb photons to promote
electrons from the valence band to the conduction band to act as detectors of radiation or
solar energy converters. Finally, certain of these materials can be configured so that
current flowing through them reunites electrons in the conduction band with holes in the
valence band to produce photons, giving rise to light emitting diodes and solid state
lasers.

The ability to grow large, extremely pure, single crystals of silicon was key to the vast
electronics industry that has been developed over the last several decades and silicon will
continue to dominated this industry for the foreseeable future. It is plentiful, cheap to
produce, and has all of the desired properties needed for most applications. It does have a
few drawbacks, however. The charge carrier mobility is relatively low, so it is not
suitable for very high frequency applications or high speed switching applications. Also,
it is not a direct band gap material, meaning that electrons cannot directly go from the
conduction band to the valence band, emitting light in the process. Therefore, it is not
suitable for making the solid state lasers that are finding wide use in the optical
communications industry.

For these reasons, there has been considerable attention compound semiconductors such
as gallium arsenide (GaAs) because of the high charge carrier mobility which allows
much higher switching speeds than Si. Unlike silicon, GaAs is a direct bandgap material,
meaning that an electron can fall directly from the conduction band to the valence band
and emit a photon of light with an energy equal to the bandgap energy. Thus such a
material can be used to fabricate light emitting diodes (LED) or solid state lasers. Thus it
can be used as both a transmitter and a receiver on the same chip in fiber optical systems.
Its unique band structure allows it to be used as a Gunn-effect oscillator for low cost
radar devices. Its higher bandgap allows it to operate at higher temperatures and makes it
less susceptible to radiation effects. This feature makes it a more desirable material for
use in extreme environments such as in geocentric or deep space missions.
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It is also possible to combine elemental or compound semiconductor systems to form
solid solution alloys with a band gap somewhere between the band gap of the initial
components. Thus it becomes possible to engineer materials to obtain a particular band
gap for a specific application. For example, cadmium atoms may be substituted for 20%
of the mercury atoms in mercury telluride (HgTe) to form Hg,;Cd,,Te which has a band
gap equivalent to 10.6 microns, the wavelength of a CO, laser. This class of materials
has found extensive use as infrared detectors and thermal imaging devices.

Most electronic or opto-electronic applications require compositionally homogeneous,
high quality single crystals. However, materials of interest are not necessarily restricted
to the more traditional semiconducting materials (those found in groups II through VI in
the periodic table.) Many organic and even some polymers have interesting optical and
opto-electronic properties. Studies of single crystals are important to other field as well;
e.g., the study of zeolite crystals as catalysts. To include this broader spectrum of
activities involving crystal growth, this section will cover all of the microgravity
experiments where crystal growth is the primary emphasis (except for protein or other
biological macromolecules — here the number of experiments is so large that they require
a separate section.)

Melt Growth of Electronic and Photonic Materials

The conductivity of semiconducting materials is extremely sensitive to the presence of
trace quantities of certain impurities called dopants, which are often added to bulk
semiconductors in order to tailor their electrical properties for a specific task. It is
important that the concentration of these dopants be uniform throughout the material so
that the electrical properties will be the same. Generally, these impurity atoms are not
incorporated into the lattice as readily as the host atoms, which leads to a phenomenon
known as segregation. When solidifying from the melt, the rate at which the impurity or
dopant atoms are incorporated into the growing crystal is directly proportional to their
concentration at the growth interface. Ideally, the concentration of rejected atoms will
build up in front of the growth interface as growth proceeds to form a diffusion layer.
Eventually, an equilibrium is reached wherein the rate at which dopant atoms from the
feed are entering the diffusion layer equals the rate at which the dopant atoms enter the
growing crystal. Growth under these conditions is said to be diffusion controlled and
once this equilibrium condition is reached, the remainder of the material will have
uniform composition.

Convective flows can cause the dopants to be distributed non-uniformly, both on a
microscopic scale (microns) as well as macroscopically. Global flows in the melt will
tend to stir the diffusion layer containing rejected component back into the bulk liquid,
thus preventing the diffusion controlled equilibrium to be reached. The resultis a
continuously varying composition as growth proceeds. Microscopic nonuniformities,
usually in the form of striations, were believed to be a result of growth rate fluctuations
caused by unsteady or turbulent convective flows in the melt. If the unsteady flows
caused the temperature at the growth interface to fluctuate, even slightly, the interface
will jump ahead and fall back as growth proceeds. More dopant atoms are incorporated
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when the growth front is accelerated, thus forming what are known as Type I growth rate
striations. The early Skylab experiments demonstrated that growth striations in dilute
systems such as doped elemental or simple compound semiconductors, could be
eliminated in microgravity and that diffusion controlled growth conditions could be
established. This prompted a number of attempts to grow bulk multi-component alloy-
type systems with the objective of obtaining better compositional homogeneity necessary
to achieve uniform electronic and optical properties.

Bridgman Growth

In the Bridgman growth technique, developed by Percy Bridgman at Harvard University,
the entire sample is melted (except for the seed if a seed crystal is used) and then the
sample is slowly lowered from the furnace to allow the material to solidify so that the
successive rows of atoms build up in an ordered fashion to form a single crystal.
Stockbarger later added a second heater at the cold end of the furnace to provide better
control of the growth interface and to reduce the sample cooling rate in order to reduce
thermal stresses in the newly formed crystal. Technically, this should be called the
Bridgman-Stockbarger technique, although Bridgman growth is a more-or-less generic
term for any directional growth method.

By placing the hotter melt above the cooler growth region, the system is thermally
stable and convection can be minimized. However, it is necessary to add heat to the melt
through the sides of the growth ampoule and extract it through the growing crystal. This
produces small radial thermal gradients in the melt causing the warmer fluid near the
walls to rise while the cooler melt near the center falls. This circulation distorts the
buildup of the diffusion layer at the growth interface resulting in radial segregation. This
effect was first quantified by Brown (1985) using computational fluid dynamical
computations.

Macrosegregration becomes a major problem in Bridgman growth of non-dilute or alloy-
type systems when the rejected component is less dense than the bulk melt. When the
diffusion layer builds up to a critical point, characterized by a dimensionless parameter
called the Rayleigh number, its lighter fluid will rise and remix with the bulk fluid. If
the growth system is turned upside down to prevent this from happening, the system
becomes thermally unstable. Thus it becomes impossible to stabilize such a system
against overturning convective flows in the presence of gravity. In fact, Coriell (1980)
has shown that such double-diffusive systems may be unstable even in microgravity if the
lower density component is more than a few percent of the total composition.

Rodot (CNRS, Meudon, France) grew 3 Ag-doped PdTe crystals that were 17 mm in
diameter by the Bridgman method on SL-1. She reported better homogeneity and
somewhat lower dislocation densities on the flight samples as compared to the ground
control which exhibited growth striations.

Crouch and Fripp from the NASA Langley Research Center attempted to grow
homogeneous lead-tin-telluride (Pb,Sn,,Te) in the General Purpose Rocket furnace (a
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relic left over from the SPAR suborbital program on the D-1 mission and observed
almost complete mixing. This material is similar to mercury-cadmium-telluride (MCT)
and is of interest for infrared detector and laser applications. The rejected component in
this system (SnTe) is less dense that the host material; therefore, is subject to the double
diffusive instability predicted by Coriell. Whether or not this experiment met Coriell’s
stability criterion was not established, nor were there any accelerometers on the mission
that could record the direction and magnitude of the quasi-steady residual acceleration.

The experiment was repeated on USMP-3 using the Advanced Automated Crystal
Growth Furnace (AADSF). Computational analysis indicated the minimal mixing should
occur if the g-vector was nearly along the furnace axis with hot over cold. Three
identical ampoules were loaded into a single cartridge for sequential processing. The first
ampoule was to be processed with the g-vector was nearly along the furnace axis with hot
over cold, the second with the g-vector was nearly along the furnace axis with cold over
hot, and the third with the g-vector nearly perpendicular to the furnace axis. The plan
was to compare the solute redistribution with the orientation during growth. For reasons
that are not clear, large voids appeared in each of the samples and they were essentially
completely mixed. This experiment was repeated on USMP-4. Unfortunately, a growth
ampoule ruptured during the growth process and no results have been obtained.

Yamada and Kinoshita (Nippon Telegraph and Telephone Research Labs) also grew
PbSnTe by the Bridgman method using the Gradient Heating Furnace on SL-J. Their
ampoule contained a plunger to keep the melt in contact with the ampoule walls. Even
s0, they found voids in the flight sample. However, the fraction of Sn remained about
0.16 after the initial transient, indicating little or no convective mixing. The etch pit
density ranged from 1x10° to 9x10° cm?, or about 1/10 the typical value for Earth grown
crystals. The intrinsic carrier density is also lower in the space grown crystal and the
mobilities are 1580 cm*Vs at 77K and 2620 cm*/ Vs at 4.2K, about 3 times higher than
typical Earth grown values. A small amount of melt leaked past the plunger and formed
small spherical crystals. The etch pit density in these crystals that formed without wall
contact was O(10* cm?.)

Tatsumi, Shirakawa, Murai, Araki, and Fujiwara (Sumitomo Electric Industries Ltd.)
grew the ternary In g,Ga, ,As by the Bridgman method on SL-J with the purpose of
determining the solute redistribution in the grown ingot. A plunger was used to eliminate
free surfaces in the melt. They report an effective distribution coefficient of 2.6 vs. a
value of 3.2 for their ground control, indicating that considerable convective mixing had
taken place.

Matthiesen (Case Western Reserve University) grew two Se-doped GaAs crystals in the
Crystal Growth Furnace on USML-1. The objective was to obtain a uniform dopant
distribution, both axially as well as radially. A second objective was to examine the
effects of transients on dopant distribution. Two translation periods were executed, the
first at 2.5 microns/sec and after a specified time, which was different between the two
experiments, the translation rate was doubled to 5.0 microns/sec. The translation was
then stopped and the remaining sample melt was solidified using a gradient freeze
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technique in the first sample and rapid solidification in the second sample. Post-flight
using quantitative infrared transmission imaging, indicated that the first sample initially
achieved diffusion controlled growth as desired. However, after about 1 cm of growth,
the segregation behavior was driven from a diffusion controlled growth regime to a
complete mixing regime. Measurements in the second flight sample indicated that the
growth was always in a complete mixing regime. In both experiments, voids in the center
line of the crystal, indicative of bubble entrapment, were found to correlate with the
position in the crystal when the translation rates were doubled.

The experiment was repeated on USML-2 using a new method for preparing the sample
which eliminated the voids seen in the USML-1 flight sample. The first sample went
polycrystalline at the meltback interface. The furnace temperature was adjusted to move
the predicted growth interface for the second sample toward the hotter part of the furnace.
It grew as a single crystal for 5 mm before the onset of polycrystalline growth. Both
samples had an initial growth rate of 0.5 microns/second. The interface shapes through
the growth have been marked by Peltier pulsing. The dopant distribution has nor yet
been published.

On D-2, Duffar and Abadie(CENG, Grenoble) grew crystals of Te doped GaSb and
Gay,In, ,Sb using ampoules whose sides were covered with super insulation to provide an
axial heat flow through the sample. Heat was conducted into and out of the ampoule
through graphite plugs at either end. The objective was to measure solute redistribution
during the Bridgman growth process and to investigate the dewetting effect that had been
observed in many previous microgravity directional solidification experiments. For this
purpose, the silica ampoules were roughened to reduce the wetting by the melt. One of
the seeds for the growth of GaggIny,Sb contained only 2% In in order to eliminate the
growth transient. Two of the ampoules broke, but the liquid was trapped and did not
escape. The liquid did not appear to have wet the roughened ampoules, but the roughness
apparently caused parasitic nucleation. The dilute sample had an axial solute distribution
indicative of diffusion controlled transport, but the non-dilute samples showed extensive
mixing. No information was reported on the radial segregation.

Duffar also investigated the effects of interface curvature in a non-dilute pseudo-binary
system, Ing ,0Ga, 5Sb using the Advanced Gradient Heating Furnace (AGHF) on the LMS
flight. It was also hoped to obtain more information on the ampoule dewetting
phenomenon seen in many microgravity directional solidification experiments. The
rejected InSb is more dense than GaSb, so the system can be both thermally and solutally
stable. However, since the freezing point is compositionally dependent, the interface will
generally not be an isotherm. Two different crucibles were used: a quartz crucible, which
has a low conductivity and should minimize the interfacial curvature; and a BN crucible,
which is a better conductor and should produce a more curved interface. Since the
macrosegregation was the object of interest in the experiment, no attempt was made to
grow a single crystal. The flight samples exhibited the classic profile for complete
mixing as described by the Sheil equation. This surprising result is still not understood.
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Alloy systems that are stable against double-diffusive convection (rejected component
more dense than the bulk melt) are subject to another source of radial segregation. This
comes about because the thermal conductivity of many semiconductor systems is greater
in the melt than in the solid. The heat flow from the melt into the solid is complicated by
the presence of the wall of the growth ampoule, which often has a thermal conductivity
between that of the solid and the melt of the sample material. This causes some heat to
flow from the melt into the wall at the growth interface causing the interfaced to become
concave. If the rejected component is more dense than the bulk melt, it will tend to flow
toward the lowest point on the solidification interface and, since the rejected component
will generally lower the freezing point, the interface will become even more distorted.
Radial segregation produced by this mechanism prompted attempts to grow alloy systems
such as HgZnTe and HgCdTe in microgravity.

Before the USML-1 flight, it was recognized that, if good macroscopic homogeneity was
to be obtain in the more demanding Bridgman growth systems, it would be necessary to
minimize transverse accelerations by keeping the Crystal Growth Furnace (CGF) axis
more-or-less aligned with the quasi-steady residual acceleration. A major portion of this
mission was flown with the orbiter’s attitude calculated to do just that. Lehoczky from
the NASA Marshall Space Flight Center prepared a Hgo,Zng ¢T€ experiment, which was
considered to have the most stringent requirement for this condition. However,
unanticipated venting forces imparted a very slight, ~0.5 micro-g, transverse acceleration
throughout most of the flight. Lehoczky’s experiment was terminated prematurely which
prevented a detailed analysis of his sample, but dopant inhomogeneities consistent with
this unanticipated acceleration could clearly be seen in the portion that could be analyzed.

For technical reasons, USML-2 could not meet Lehoczky’s stringent attitude
requirements, but he was able to fly Hg,Cd,,Te sample in the Advanced Automated
Crystal Growth Furnace (AADSF) on USMP-2. During the USMP-2 mission, the Orbiter
was maneuvered into several different attitudes so that the residual g-vector made varying
angles relative to the growth direction. Lehoczky reports. “Significant differences were
observed during three long, but uninterrupted, periods at constant attitude. Compositional
variations along the crystal circumference indicate residual fluid flows for the Jeast
favorable vector orientations. Identifiable regions exist in which a transverse vector has
pushed the material against the ampoule wall and allowed it to readily contract away
from the opposite wall. Such surfaces showed etch pits produced by preferential
evaporation at defect sites. X-Ray scattering showed that the regions pulled away from
the wall tended to be less strained or of higher quality material than the opposite surface,
and considerably better than the Earth-grown material. Composition determination on the
surface of the material demonstrated significant difference dependent on the direction of
the residual acceleration vector. These are clear indications of three-dimensional fluid
flow. A significant portion of the boule was grown with a component of the vector
aligned in a direction from liquid to solid. Synchrotron X-ray studies of this material
showed it to be single crystal and of much lower defect density.”
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An attempt to re-fly Lehoczky’s experiment on USMP-4 was thwarted when a ruptured
ampoule from another experiment shut down the furnace before his sample could be
processed.

Since Lehoczky’s requirements could not be met on USML-2, a substitute experiment
was flown to explore the important question of the effect of furnace orientation relative to
the residual g-vector on solute redistribution during directional solidification
experiments. Lichtensteiger (University Space Research Associates, MSFC) prepared a
Ga-doped Ge sample. This model system was chosen because its characteristics are well-
understood. Two analytical techniques were used to characterize the material, Peltier
pulsing to mark the interface periodically, and high resolution spreading resistance
measurements to map out the dopant distribution. The first crystal growth was started
with the Shuttle in the most favorable attitude for crystal growth. Later, the attitude was
changed to a gravity gradient attitude. The average dopant profile appears to be purely
diffusive throughout the entire growth. No change was seen as a result of the maneuver.
However, there is a consistent difference in dopant concentration across the sample
which is indicative of flows that would produce radial segregation. (Unfortunately,
acceleration data at the furnace is not given.) A second crystal was grown during a
period when the Shuttle was in the solar inertial attitude. Since this attitude is unstable
with respect to the gravity gradient, frequent thruster firings are required. Significant
disturbances were seen in the dopant profile for the growth that took place during this
attitude.

These results clearly demonstrate the extreme sensitivity of this type of growth system to
very small accelerations and verify the predictions based on computational fluid
dynamical modeling. They also provide additional evidence that wall effects play a
significant role in defect formation.

In many of the earlier US and Russian Bridgman growth experiments in reduced gravity,
the solidified ingot was found to be smaller than the growth ampoule and the melt
appears to have pulled away from the ampoules during the solidification process. The
effect was noticed on the first directional solidification experiments flown on Skylab and
several of the investigators reported fewer growth defects in the portions of the sample
that apparently solidified without wall contact. Several theories have been suggested to
explain why the growing crystal might avoid wall contact in microgravity, but the exact
mechanisms have not yet been tested or verified. Clearly, partial wall contact would
affect the heat transfer; something that is not considered in setting up the experiment,
which could place the growth front in an non-optimum position in the furnace. The
existence of free surfaces also opens the possibility for Marangoni convection which can
produce unwanted mixing of the diffusion layer with the bulk melt. (More will be said
about Marangoni convection in the next sections.)

Single crystalline CdTe is widely used as a substrate for focal plane arrays as well as for
nuclear detector applications. Because of its high bandgap, it is transparent to infrared
radiation, so it can serve as a window for the HgCdTe detectors, which can be grown
epitaxially directly onto the CdTe window. However, it is difficult to grow CdTe with
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low dislocation densities and it has a tendency to form twins. Often small quantities of
Zn are added to strengthen the lattice. O (then at Grumman Aerospace Corp., Bethpage,
New York) wanted to investigate how gravity might influence the formation of these
defects in Cd,4sZn,sTe. Because of the small mole fraction of Zn and because its
distribution coefficient is close to 1, macrosegregation is not a serious problem when
growing this material in normal gravity. Since the melt in Larson’s experiment had some
void space in the growth ampoule to allow for thermal expansion, the unanticipated 0.5
micro-g lateral acceleration from the venting on USML-1 had the fortuitous effect of
nudging the melt against one wall of the growth ampoule and leaving the opposite side of
the melt free of wall contact.

For his USML-1 flight results, Larson reports, “Macrosegregation was predicted, using
scaling analysis, to be low even in one-g crystals and this was confirmed experimentally,
with nearly diffusion controlled growth achieved even in the partial mixing regime on the
ground. Radial segregation was monitored in the flight samples and was found to vary
with fraction solidified, but was disturbed due to the asymmetric gravitational and
thermal fields experienced by the flight samples. The flight samples, however, were
found to be much higher in structural perfection than the ground samples produced in the
same furnace under identical growth conditions except for the gravitational level.
Rocking curve widths were found to be substantially reduced, from 20/35 arc seconds (in
one-g) to 9/20 arc seconds (in p-g) for the best regions of the crystals. The FWHM of 9
arc seconds is as good as the best reported terrestrially for this material. The ground
samples were found to have a fully developed mosaic structure consisting of subgrains,
whereas the flight sample dislocations were discrete and no mosaic substructure was
evident. The defect density was reduced from 50,000-100,000 (in one-g) to 500-2500
EPD (in p-g). These results were confirmed using rocking curve analysis, synchrotron
topography, and etch pit analysis. The low dislocation density is thought to have resulted
from the near-absence of hydrostatic pressure which allowed the melt to solidify with
minimum or no wall contact, resulting in very low stress being exerted on the crystal
during growth or during post-solidification cooling.”

Larson repeated this experiment on USML-2 using a novel ampoule design that would
minimize wall contact with the sample. He was able to grow 20 mm of sample without
any wall contact and 21mm with only partial wall contact. A second sample had a
spring-plunger system that forced the sample to fill the ampoule, thereby assuring wall
contact. Preliminary analysis showed that twin formation was virtually zero in the region
grown without wall contact; whereas, the sample in the spring-loaded ampoule was
highly strained at the exterior and heavily twinned.

These results clearly demonstrate that wall effects are a major source of defect formation
on the ground as well as in space grown crystals.

Travelling Heater Method

A variation of the Bridgman growth technique, is the traveling heater method (THM).
Instead of melting the entire charge, only a small portion of the charge is melted and the
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molten zone is moved through the sample by the traveling heater. Usually the dopant
atoms of interest have a small distribution coefficient meaning that only a small fraction
of the dopants in the melt will be incorporated into the solid. Thus a specific quantity of
dopant can be added to the initial zone to be melted and this quantity will remain almost
the same as the zone is moved through the sample. This process, known as “zone
leveling”, produces a reasonably uniform distribution of dopant on a macroscopic scale.
However, turbulent flows in the molten zone can still result in microscopic
inhomogeneities or striations.

For compound systems, such as gallium arsenide (GaAs) or cadmium telluride (CdTe),
the material is often grown by the traveling solvent zone, a variation of the traveling
heater method in which the melt that contains an excess of the metal. The excess metal
lowers the melting point of the solution, which allows the growth to take place at lower
temperatures and also lowers the vapor pressure of the volatile component. The lower
growth temperature reduces the number of inherent point defects that will always be
present in crystals, and also reduced the thermal stress on the lattice, which generally
reduces the dislocation density.

Schoenholtz, Dian, and Nitsche (Kristallographisches Institut Universitat Freiburg
Germany) grew Cl-doped CdTe crystals by the travelling heater method using a Te
solvent zone on SL-1 and on D-1. The SL-1 experiment was terminated prematurely
which caused the crystal to crack, but the experiment was repeated on D-1. There were
some problems with heating lamp in the Mirror Heating Facility (MFT) and the rotation
mechanism failed. As a result, the travelling zone was asymmetric and the desired
temperature was not reached. The etch pit density (a measure of dislocations) was S5to
10 times lower than the seed on the hot side of the grown material, but was many times
higher on the cooler side.

Benz and Danilewsky at the Institute of Physics, University of Stuttgart, together with
Nagel, Wacker-Chemitronics, also carried out a series of growth experiments with doped
compound semiconductor using the traveling heater method (THM). The mono- ellipsoid
ELLI furnace was used to process a 15 mm diameter S-doped InP and a 10mm diameter
Te-doped GaSb during the SI-1 and D-1 missions. Benz reported reduced striations in
the InP sample and “space-grown Te doped GaSb crystal was found to be nearly striation
free with only residual dopant inhomogeneities, while ground-processed crystals showed
pronounced structures of rotational and non-rotational periodic striations over the whole
cross section of the crystal” (the sample is rotated to smooth out axial thermal
inhomogeneities which causes the rotational inhomogeneities). On the D-2 mission, a
20 mm diameter GaAs crystal was grown from a traveling Ga solvent zone. The heater
lamp was dimmed periodically to mark the growth interface. The results were very
much like those obtained on the D1 flight in that the Type I striations due to convection
driven growth rate fluctuations were eliminated.

Harr, Dornhaus, and Brotz (Battelle Institute, Frankfort) grew the solid solution ternary,

lead-tin-telluride (Pb o¢Sn ,,Te) from a Pb-Sn rich solution during the D-1 mission. As
mentioned previously, this material is subject to double-diffusive convection and is
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impossible to stabilize using the Bridgman growth technique in normal gravity. The
traveling solvent zone technique has the advantage that complete convective mixing in
the solvent zone is not undesirable because the source material is continually feeding new
nutrient into the traveling solvent zone, thus keeping the composition more-or-less
constant. However, it is essential to control the solvent zone temperature very precisely
in order to obtain the desired composition of the growing solid. Harr found improved
compositional homogeneity in the flight sample whereas “a tin content segregation was
found in THM part of the earth-grown sample, but not in the microgravity sample.
Additional oscillation of tin content were found along the entire ground sample.” It was
noted that the diameter of the flight crystal was slightly smaller than the ampoule and that
growth facets and etch pits could be seen on the surface. In the absence of hydrostatic
pressure, the melt did not press against the wall, allowing the solid to form without direct
wall contact. Selective evaporation from the free surface apparently formed the etch pits.
The material was p-type and the hole mobility was found to be 5500cm?/Vs in the
microgravity sample, compared to 1900cm?*Vs found in the ground-based reference
sample. Harr attributes this improvement to a reduction of scattering centers induced by
a reduction of stresses produced by contact with ampoule wall.

Iwai and Segawa (Institute of Physical and Chemical Research, RIKEN) grew single
crystal PbSnTe by the travelling zone method using the mirror furnace on SL-J. The
starting material was a 10 mm diameter Bridgman-grown rod of PbSnTe. A zone was
melted and translated at 2 mm/hr for 4 hours. Te bubbles were observed on the surface of
the molten zone. On the ground control, these bubbles rose, creating a void, which
eventually caused the zone to become unstable and break. The bubbles in the flight
sample remained distributed in the molten zone, but no void was found in the grown
crystal. The Sn content in the grown crystal increased with distance from the seed but
eventually leveled off as equilibrium in the zone was reached. Again it was found that
intrinsic carrier concentration was lower and mobilities were higher in the micro-g
sample.

Floating Zone Growth

In the traveling heater method described above, the samples were enclosed in quartz
ampoules. However, short molten zones can be supported by their surface tension even
in normal gravity and much larger zones can be deployed in microgravity. Removing
contact with the ampoule wall offers many potential advantages such as elimination of
contamination from the wall material (a serious problem at high temperatures),
climination of wall-induced stress which cause dislocations, and elimination of heat
transfer through the wall in the vicinity of the growth interface which warps the isotherms
in this critical region causing growth defects. However, thermal gradients along the
freely suspended melt can drive strong and even turbulent convective flows (Marangoni
convection). Steady flows in the molten zone may even be desirable since they tend to
homogenize the composition of the melt, but turbulent flows can produce unwanted
growth rate striations. Because of this, Marangoni convection has been the subject of
intense study, both from the fluid dynamists as well as from the crystal growers.
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Eyer and Nitsche from the Kristallographisches Institut Universitat, Freiburg grew P-
doped Si using the Mirror Heating Facility on the SL-1 mission. They found that the
striations in the flight sample were similar to those seen in the ground control sample and
concluded that turbulent Marangoni convection, rather than buoyancy-driven convection
was indeed responsible for the striations. Croell and Nitsche repeated this experiment on
D-1 in which the Si rods were coated with a 5 micron thick, coherent, amorphous silica
film. Two sources of boron were also deposited on the surface to serve as the dopant.
Despite some technical difficulties with sample overheating, they were able to show that
the thin Si coating was effective in suppressing Marangoni flows.

Koelker (Wacker-Chemitronic, GmbH, Munich) used a pedestal melt technique to
solidify a Si sample with free surfaces (similar to the method used by Walter to solidify
an InSb drop on Skylab). The end of a Czochralsky-grown Si rod was melted in the
mirror furnace to form a spherical drop approximately 1 cm®. On SL -1 the sample was
rotated at 10 rpm as it was pulled out of the furnace at 1 mm/min. The initial molten
silicon drop was spherical, but the growing crystal very strongly deviated from the
spherical shape and assumed more or less the shape of a rocket nose once solidified.
Post-flight examination of the sample revealed that a thin, dark surface layer had formed
on the surface of the specimen, probably due to a carbon-based impurity of unknown
origin. Initially, only widely space striations were observed which appeared to be
associated with the rotation and translation of the sample (due the heating asymmetry of
the double ellipsoid furnace. Toward the end of growth, more closely space striations
were seen, which were attributed to non-steady Marangoni flows. On D-1, the sample
was not rotated and remained uncontaminated. In this case, a dense pattern of randomly
fluctuating striations were seen which are clearly due to non-steady Marangoni flows.

Nishinaga, Sugano, Saitoh, and Katoda (University of Tokyo) wanted to see if Koelker’s
result may have been due to thermal non-uniformities in the image heating furnace, so
they used a more stable resistance heated furnace on their SL-J experiments. In one of
their experiments, they heated a single crystalline Si rod to form a spherical drop, similar
to that of Koelker, except for the use of a resistance heated furnace. Unfortunately,
instead of the drop remaining at the tip of the rod, it moved to the side where it contacted
the quartz ampoule and broke into pieces as it cooled. In the second experiment, they
heated a single crystal of Si in the form of a sphere which was contained in a quartz
crucible. The plan was to melt the outer layers of the sphere and allow it to recrystallize
using the unmelted center as the seed. However, the molten Si got through the quartz
ampoule and touched the Ta cartridge, which resulted in a eutectic reaction causing a loss
of Si. Consequently, the regrown region was a hemisphere with several facets on the
outer surface. This portion, when cut and polished, revealed no striations.

Carlberg (Mid Sweden University), Camel, and Tison (Centre d’Etudes Nucleaires,
Grenoble, France) grew two 10 mm diameter gallium-doped germanium crystals using
the float zone process during the D-2 mission. The evacuated growth ampoules had
getters to remove any traces of oxygen and other impurities that might contaminate the
melt surface. Seebeck voltage measurements were made to detect growth rate
fluctuations that might occur from unsteady Marangoni convection. No fluctuations were
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observed, although an asymmetrical dopant distribution in the sample was attributed to
steady Marangoni convection.

Building on the findings from SL-1 and D-1, several investigators attempted to grow
gallium arsenide on D-2. As mentioned previously, gallium arsenide (GaAs) is a material
of great technological importance. Being a compound rather than an elemental system,
the growth problems with GaAs are multiplied. Not only is it necessary to be able to
control dopant homogeneity and structural defects, but stoichiometry must also be
controlled, which means an overpressure of arsenic vapor must be maintained to prevent
loss of this volatile component. Unlike silicon which has a strong covalent bond and can
be grown dislocation —free in large diameters by the float zone process on Earth, the
surface tension to density ratio of GaAs limits the diameter that can be grown by the float
zone technique on Earth to about 7 to 8 mm in diameter, too small for device
applications. The mixed ionic-covalent bonds in GaAs are weaker and dislocations and
other defects form more readily. As a result, dislocation densities tend to be fairly high,
typically on the order of 10*/cm?®

Hermann and Muller from the Institut fuer Werkstoffwissenschaften, Universitat
Erlangen, grew four single crystals of silicon doped-gallium arsenide by the float zone
process that were 20 mm in diameter, more than twice the diameter than can be grown by
float zone in normal gravity. A special heater controls an arsenic source to provide the
necessary arsenic overpressure. As a result, stoichiometry was maintained with no
evidence of either gallium or arsenic precipitates. They were able to control the shape of
the growth interface by controlling the height of the molten zone. When the interface
was nearly flat, the dislocation density dropped to 5x10° cm® Rocking curve width,
which measures the internal order of the crystal, was as low as 11.6 seconds of arc,
comparable to best quality crystals grown on Earth. Dopant striations were observed,
which were attributed to unsteady Marangoni convection. A cobalt-samarium magnet
was inserted near the end of several samples to help suppress the Marangoni convection,
but the field was too weak to prevent unsteady Marangoni flows. Similar results were
obtained by Croell, Tegetmeier, Nagel, and Benz (Kristallographiches Institute der
Universitat Freiburg) with Te-doped gallium arsenide.

Nakatani, Takahashi, Ozawa, and Nishida (National Research Institute for Metals, Japan)
grew a single crystal of InSb by the float zone process using the mirror furnace on SL-J.
The seed was a 20 mm diameter rod of single crystal and the feed was polycrystalline
InSb. A zone 45 mm long was melted and propagated at the rate of 0.33 mm/minute,
resulting in a single crystal 20-30 mm in diameter and 100 mm long. An oxide skin
formed on the crystal which apparently prevented Marangoni convection since the grown
crystal was free of striations, as was determined by X-ray topography. Dislocation
densities were also low and the electrical resitivity doubled over the length of the zone.

Samarskite is a naturally occurring mineral that is composed of 5 phases containing Ca,
Fe, Y, U, Th, Nb, Ta, and O. Alpha particles from the decay of U and Th have destroyed
is native structure, so it is difficult to determine how this mineral was formed. Takekawa
(National Institute for Research in Organic Materials, Japan), Shindo (ASGAL Co. Ltd.)



and Sugitani (Kanagawa University) set out to crystallize this material using the traveling
solvent floating zone in the Image furnace on SL-J. Several peritectic reactions are
apparently involved in which solid 1 plus a liquid reacts to form solid 2. This means that
solid 1 must diffuse through the liquid to reach the forming solid 2. Because of the
various density differences, this scenario is difficult to arrange in normal gravity. The
material was successfully melted, but large bubbles in the melt interfered with the growth
process and the results are inconclusive.

Liquid Phase Epitaxial Growth

As discussed previously, there are advantages to growing systems with high melting
temperatures from a solution in which one on the metal components acts as a solvent.
Suzuki, Kodama, and Ueda (Space Technology Corporation, Tokyo) developed a unique
method for growing GaAs from Ga which they demonstrated on SL-J. The Ga doped
with Sn was enclosed in a cube whose sides were single crystal wafers of intrinsic GaAs
with different orientations. When the system was heated, some of the GaAs dissolved in
the molten Ga and then redeposited as Sn-doped GaAs when the system was cooled back
to ambient. Since there were no free surfaces, Marangoni convection was eliminated and
the liquid phase epitaxial growth could be studied in the absence of convective flows.

The growth on the top wafers was thicker than on the bottom wafers in 1-g and was
uniform and thicker in microgravity. The surface morphology of the upper wafers was
much rougher than the bottom wafers in the ground control while the flight samples were
generally smoother, an effect that must be due solely to convective flows. n general,
growth on (111) surfaces was somewhat thicker than on (100) faces. There was no
difference in the normalized depth distribution of the dopant atoms. Type II striations,
which arise from macrostep propagation, are seen in both flight and ground control
sample, but are distinctly different. In the flight samples, the striations are thin and run
parallel to the growth surface; whereas, the striations pass through the growth layer.

Crystal Growth from the Vapor

For materials that lend themselves to physical or chemical vapor transport, growth from
the vapor offers some attractive alternatives to growth from the melt. Growth can take
place at temperatures considerably lower than the melting point, thus avoiding some of
the higher temperature problems associated with melt growth. Gravity-driven convection
will definitely influence the growth process, perhaps in ways that are not yet completely
understood or appreciated. For example, Rosenberger has shown that compositional
gradients arising from the interaction of multicomponent systems with any vertical wall
will always result in horizontal density gradients which produce buoyancy-driven
convective flows. Convective transport is governed by the product of the Grashof and the
Schmidt number. The Grashof number is directly proportional to gravity and measures
the convective flow. The Schmidt number, which is the ratio of kinematic viscosity to
chemical diffusivity, can be as high as several thousand for melt growth systems, but is
~1 for a typical vapor growth process. Therefore, diffusion limited growth conditions
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can be obtained under far less stringent acceleration conditions than those required for
melt growth .

For materials that lend themselves to physical or chemical vapor transport, growth from
the vapor offers some attractive alternatives to growth from the melt. Growth can take
place at temperatures considerably lower than the melting point, thus avoiding some of
the higher temperature problems associated with melt growth. Gravity-driven convection
will definitely influence the growth process, perhaps in ways that are not yet completely
understood or appreciated. For example, Rosenberger has shown that compositional
gradients arising from the interaction of multicomponent systems with any vertical wall
will always result in horizontal density gradients which produce buoyancy-driven
convective flows" . However, since the Schmidt numbers characteristic of the vapor
growth process are ~1, diffusion limited growth conditions can be obtained under far less
stringent acceleration conditions than those required for melt growth .

Several vapor crystal growth experiments on the Shuttle have produced provocative
results that are not at all understood. For example, on OSTA-2, Wiedemeier (Rensselaer
Polytechnic Institute) grew unseeded GeSe crystals by closed tube physical vapor
transport using the General Purpose Rocket Furnace that was developed for the SPAR
suborbital program. The two growth ampoules contained different pressures of Xe which
served as a buffer in the transport since the primary purpose of the experiment was to
understand the vapor transport process without the effects of gravity. In the ground
control experiment, many small crystallites formed a crust inside the growth ampoule at
the cold end. The flight experiment produced dramatically different results; the crystals
apparently nucleated away from the walls and grew as thin platelets which eventually
became entwined with one another, forming a web that was loosely contained by the
ampoule. Even more striking was the appearance of the surfaces of the space-grown
crystals. These were mirror-like and almost featureless, exhibiting only a few widely
spaced growth terraces. By contrast, the crystallites in the ground control experiments
conducted under identical thermal conditions had many pits and irregular, closely spaced
growth terraces. The experiment was repeated during the D-1 mission using two
additional pressures of Xe in order to add additional points to the transport vs. pressure
curve. The unusual morphology of the space grown crystal was also seen on this flight.

Additional vapor growth experiments was carried out by Wiedemeier on USML-1 and
on USML-2 in which Hgg 4Cdg ¢Te was grown epitaxially on (100) CdTe substrates by
closed-tube chemical vapor deposition using Hgl, as the transport agent. Considerable
improvements in the USML-1 flight samples were observed in terms of surface
morphology, chemical microhomogeneity, and crystalline perfection. The surfaces of the
ground control samples had a wavy step-terrace structure, whereas the flight samples
were mirror smooth such that growth steps could not be resolved at 500x. Compositional
differences were 2 — 3 times smaller in the flight sample. Rocking curve widths of the
space-grown epitaxial layers were 90-120 arc seconds, less than half the ground control
and equal or less than the best epitaxial layers grown on the ground by the MOCVD
technique. These improvements were attributed to the sensitivity of the Hg;_,CdxTe-
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Hgl, vapor transport system to minute fluid dynamic disturbances that are unavoidable in
normal gravity.

The primary objective of the USML-2 experiment was to measure the effect of
microgravity on the initial epitaxial growth process; effects that had been annealed out
during the growth in the USML-1 experiment. Consequently, the growth times were
much shorter on USML-2 so that the transition from the initial growth islands to
epitaxial layers could be observed along with the propagation of birth defects from the
interface to the epitaxial layer. Inspection of the growth islands on the flight sample
revealed well-developed faces and facets indicating a higher degree of order than the
ground control which was confirmed by their measured etch pit densities that were 50
times lower.

Mercuric iodide (Hgl,) forms a layered structure, similar to graphite, in which the A-B
planes are bonded by van der Waals forces. Consequently, the crystalline structure is
very weak, especially at the growth temperature, and it was thought that the performance
of the material as a room temperature nuclear spectrometer might be limited by defects
caused by self-deformation during the growth process. Schnepple and van den Berg
(EG&G Corporation) grew mercuric iodide crystals were by physical vapor transport on
Spacelab 3. Their growth technique was similar to the method used by EG&G to grow
this material commercially. A seed was placed on a temperature controlled pedestal and
was surrounded by a container whose walls had been coated with the source material. A
small temperature difference was maintained between the walls and the seed to drive the
growth process.

It was possible to increase the growth rate on Spacelab 3 to more than twice the rate on
the ground without spurious nucleation. The space-grown crystal was 1.2 x 1.2 x 0.8 cm
and weighed 7.2 grams. It exhibited sharp, well-formed facets indicating good internal
order. This was confirmed by 7y- ray rocking curves which showed a single peak and
were approximately one third the width of the multi-peaked curves from the ground
control crystals; however there was still evidence of lattice strain in the flight sample.
Measurements just after the flight showed that both electron and hole mobility were
significantly enhanced in the flight crystal, although, for reasons that are not clear, these
values decreased after some time. Is was speculated that this degradation may be a result
of handling this extremely soft material.

The experiment was repeated on IML-1 with similar results. This time the rocking
curves on the flight crystal were sharper and more symmetric, although, in one area, a
second peak was observed which indicated two domains misoriented by 0.1 degree.
Again the electron mobility and p T product (product of mobility and carrier lifetime)
showed slight improvement over the ground, while a dramatic improvement was seen for
the hole mobility and hole p © product. It is still not understood whether the improved
quality of the flight crystals was due to the elimination of the weight of the crystal during
its growth, or to the diffusion-controlled transport conditions that produced a more
uniform growth environment.
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Cadoret (Universite Blaise Pascal, Aubiere, France) also grew Hgl, on SL-1 and on IML-
1. On SL-1, he used an unseeded closed tube physical vapor transport technique. Three
growth ampoules were prepared, one was under high vacuum, one contained 0.1 Torr Ar
as a buffer gas, and the third contained styrene to poison one of the growth faced in order
to promote growth of flat platelets. Larger single crystals were obtained in space as
opposed to smaller polycrystals in the ground control. A seeded technique was used on
the IML-1 experiment with highly purified material supplied by EG&G. The space-
grown crystal exhibited flat, well-defined faces an produces a rocking curve with a
FWHM 0.04°. The ground control crystal was quite irregular in shape and was of such
poor quality that a rocking curve could not be obtained.

On the D-1 mission, Bruder, Dian, and Nitsche (University of Freiburg) grew a CdTe
crystal from the vapor phase by closed tube sublimation/condensation by placing the
source material in the focus of the monoellipsoidal mirror furnace and heated it to about
880 degrees Celsius. The heat flow in the ampoule was modified by a tight fitting Ni net
on the outside to give a slightly convex shape to the growth interface to prevent parasitic
nucleation. Unfortunately, the seed quality in the flight sample turned out to be much
poorer than the ground control so that a meaningful comparison could not be made. The
large etch pit density in the material near the seed did diminish somewhat as the growth
of the flight sample progressed, but did not reach the lower value of the ground control.

Using the 3-zone Gradient Heating Facility on D-1, Launay (Universite Bordeaux) grew
Ge by closed tube chemical vapor transport with Gel, as the transport agent.
Polycrystalline Ge was located at the hot and cold zones and a single crystal substrate
was attached to a wall at an intermediate temperature. There ampoules with different
transport gas pressures were processed simultaneously to obtain the mass flux as a
function of transport gas. These results were in good agreement with a one-dimensional
model assuming purely diffusive transport. The quality of the epitaxial layers grown in
space is much higher than those made on earth. On earth the layers exhibit a multitude of
little holes on the surface, whereas the flight layers were smooth.

Kimura, Nishimura, and Ono (Space Technology Corporation, Tokyo) with Takayami
(Mitsubishi Corporation, Tokyo) grew InP during the D-2 mission using a closed tube
chemical vapor transport using InCl, as the transport agent. The grown layer is doped
with S while the substrate is doped with Fe so that the layers will be distinguishable.
Rocking curves for the both the space and ground control epi-layers showed single peaks,
signifying that the were single crystalline, although the FWHM of the space sample was
slightly wider than the ground control, which was also slightly wider than the substrate.
This would indicate slightly more lattice strain in the layer grown in microgravity. The
transport rate increased linearly with pressure of the transport gas in the ground control
experiments, but started to fall off to a constant value for the flight experiments, which
would be expected for diffusion controlled transport. The thickness of the epilayers
varied considerably in the ground control samples which were much thicker in the center
and thinned rapidly near the periphery of the substrate. The flight samples, on the other
hand, were uniformly coated.
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Crystal Growth from Solution
Co-deposition Growth

Galster and Nielson used a three chamber method to grow calcium tartrate and calcium
carbonate crystals from solution on SL-1. Solutions in the outer chambers are allowed to
interdiffuse through a buffer in the middle chamber where they react to form the crystal
as a coprecipitate. An attempt was also made to grow TTF-TCNQ, an organic
conductor, but the growth solution deteriorated before the experiment was activated. No
information on the quality of the crystals was given.

Authier, Lefaucheux, and Robert (Universite P and M Curie, Paris) grew brushite
(CaHPO,.2H,0)and lead monite (PbHPO,) crystals on SL-1 using a similar method. The
space grown crystals were analyzed by X-ray topography and were found to be of
comparable quality to those grown on the ground using gels to control convection.

On IML-1, Kanbayashi (NASDA) and Anzai (Himeji Institute of Technology) grew an
organic charge transfer complex by diffusing donor and acceptor starting materials into a
central chamber containing a suitable solvent, similar to the method used in the above
experiments. One growth apparatus was mounted to a passive vibration damper to see if
g-jitter affected the growth of the system. By shortening the distance over which
diffusion must occur and using more concentrated solutions, they reported that they were
able to grow a crystal in space in one week that would take three months on the ground.
Their space and ground control crystals were comparable, although the space crystal
grown with the vibration damper was somewhat fatter. Electron spin resonance showed
that the space and ground crystal had the same electronic structure in which free electrons
existed in a narrow conduction band. Both space and ground crystals had a
superconductivity transition at 1.2K under 7 kilobars applied pressure.

Anzi also attempted to grow TTF-TCNQ by the same technique on SL-J, but no crystals
formed because of technical difficulties.

Controlled Nucleation

Controlling nucleation in microgravity experiments presents several difficulties. Cooling
a solution into saturation usually results in nucleation at the walls. Inserting a seed
generally caused the propagation of defects into the growing crystal (ghost of the seed).
Using the glovebox on USML-1, Kroes, Lehoczky, and Reiss (NASA MSFC)
demonstrated a novel method for initiating and controlling nucleation in solution crystal
growth. A hot concentrated solution of L-Arginine Phosphate Monohydrate
(C¢H,,N,0,H,PO,.H,0) or LAP was injected into a cooler lightly saturated solution of the
same. Copious nucleation resulted as the warmer solution cooled. Most of the crystals
drifted to the walls under the influence of residual gravity. A few of the crystals
remained suspended and grew to as large as 3 x 5 x 0.5 mm.
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Cooled Sting Growth

Triglycene sulfate TGS is a long wavelength pyroelectric infrared detector material. Lal
(Alabama A&M University) grew TGS crystals on Spacelab 3 and on IML-1 using a
novel cooled-sting approach. The seed crystal is mounted on a small pedestal through
which a heat pipe can extract heat from the crystal using a thermoelectric device. Thus
the bulk growth solution can be held at near saturation while the fluid at the growth
interface is driven to supersaturation required for growth by extracting heat through the
crystal. This technique eliminated the spurious nucleation within the growth cell which
had plagued many of the earlier attempts to grow crystals from aqueous solution in
microgravity. By growing under diffusion controlled transport conditions, it was hoped to
avoid liquid/vapor inclusions. These are the most common types of defects in crystals
grown from solution and are believed to be caused by the nonuniform growth conditions
resulting from convective flows.

On SL-3, an oriented seed was cut from an Earth-grown TGS crystal. Irregular growth
occurred primarily around the perimeter of the seed, which made it difficult to analyze.
An improved seeding technique was used on IML-1 which produced a much more
uniform region of new growth. In normal gravity, good crystal can be grown on the (100)
face, but growth on the (010) tends to be non-uniform and multi-faceted. However,
uniform growth was achieved on the (010) seed used in the IML-1 flight. In order to
grow sufficient material to analyze during the mission, an undercooling of 4°C was used
to promote faster growth (~1.6 mm/day). Despite this accelerated growth, the quality of
the crystal was exceptionally good. There was a smooth transition from seed to new
growth without the veil of dislocations surrounding the seed crystal (“ghost of the seed”),
which is normally seen when crystals on seeded on the ground. The TGS crystal grown
on the IML-1 mission was examined with high resolution monochromatic synchrotron X-
radiation diffraction imaging using the National Synchrotron Light source at Brookhaven
National Laboratory. The X-ray topographic images indicate an extraordinary crystal
quality. The only inclusions are due to the incorporation of polystyrene particles
intentionally inserted in the growth solution to study the fluid motion in Jow-g. The
detectivity (D*) of the space grown crystal was found to be significantly higher than the
seed crystal and the loss tangent was reduced from 0.12-0.18 for the seed to 0.007 for the
space grown material.

The growth of these crystals was monitored by periodically taking shadowgrams,
Schlieren photographs, and holograms of the growing crystal and its surrounding
medium. The concentration profiles could be visualized from the shadowgraphs and
Schlieren images, and determined quantitatively from the reconstructed holograms.
These graphic images confirmed that the concentration field was purely diffusion-limited
and inspired some of the protein crystallographers to try growing their protein systems in
space. Small polystyrene marker particles were added to the growth solution on the IML-
1 flight to visualize whatever flows might exist as a results of residual accelerations.

70



Growth of Zeolites

Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the
chemical process industry worldwide. They are used primarily as adsorbents and
catalysts. One of their most important roles is that of a “cracking” catalyst in the
petroleum industry. New applications for zeolites include selective membranes, chemical
sensors, polymer-zeolite composites, and molecular electronics. For these reasons, this is
an intensive interest in obtaining a better understanding of how they nucleate and grow
with the aim of being able to tailor their structure for specific applications.

Various forms of zeolite crystals, including zeolite-A, X, Beta, and Silicalite were grown
by Sacco (Worcester Polytechnic Institute) on USML-1 and -2 with the aim of getting
larger and more uniform crystals. In general, the crystals grown in space with nucleation
control grew 10 to 25% larger in linear dimension than their ground controls. The zeolite-
X crystals grown on USML-2 were 25 to 50% larger than their ground controls and twice
as large as grown on USML-1. For the most part, the flight samples had higher Si/Al
ratios than did their control samples and one of the A crystals exhibited the theoretical Si
/Al ratio of 1.00, which not been seen before. Space-grown Beta crystals were free of line
defects that are common in those grown on the ground. X-ray diffraction studies
indicated slightly smaller unit cell volumes, which indicates fewer defects. A comparison
of the catalytic activity of the space and ground-grown crystals has not yet been
published in the open literature.

Thermophysical Properties Measurements

Anyone attempting to model solidification processes will soon find that reliable
thermophysical property data, especially data on transport properties such as diffusion
coefficients and thermal diffusivity for molten systems, are difficult to come by.
Generally such measurements are made in thin capillary tubes to minimize the effects of
convective transport, but any attempt to measure such transport properties on Earth will
always be contaminated to some degree by buoyancy driven convective flows.
Furthermore, a simple demonstration experiment by the crew on Skylab, in which they
layered strong tea and clear water into a plastic toothbrush holder, showed a bullet-like
diffusion region between the tea and water instead of the expected planar diffusion front.
This observation suggested that wall effects may influence to diffusion of one component
into another and raised the specter that much of the diffusion data that had been taken in
capillary tubes may also be in error.

Measurement of Diffusion Coefficients

On Spacelab-1, Frohberg, Kraatz, and Wever (Institut Fur Metallforschung Technische
Universitit Berlin) measured the interdiffusion coefficient of Sn''2 and Sn'® over a
temperature range of 240°C to 1250°C. The diffusion coefficients measured on the
ground were 30-50% higher than those measured in space, which they attribute to
convective transport. Results in a 3 mm dia. cell were indistinguishable from those in a 1
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mm dia. cell, indicating that wall effects were not significant. The precision with which
the interdiffusion coefficient could be determined from the space data was 50 times
better than the ground-based data. Which this higher precision, the isotope effect could
easily be measured. An unexpected result was the fact that the space data seemed to
follow a T? law rather than an Arhenius law, typical of diffusion in solids. This departure
from the classical vacancy diffusion law for solids may shed new light on the structure of
liquid metals. They followed this experiment with measurement of interdiffusion of In'"
and Sn at different temperatures on D-1. Again they found that the diffusion coefficient
followed a T? dependence.

The finding that the diffusion coefficient seems to follow a T? law in the liquid metallic
systems investigated on Spacelab-1 and D-1 raised a number on interesting issues. Does
this law apply to all liquid metals? What happens in the undercooled or glassy state?
Where does transition to the solid Arhenius-like behavior occur? Does the T? law also
apply to diffusion in aqueous solutions? A group of diffusion experiments were planned
for the D-2 mission to address these questions.

Frohberg et al. looked for possible deviations from the T? law in systems that had low
coordination numbers or those that tended to form associates. The argument was that if
the glass forming metals followed an Arhenius behavior in the glassy state, there might
be some deviation from the T? law at the lower temperatures. Consequently, they choose
to measure self-diffusion in Pb, Sb, and In and for impurity diffusion for In in Sn and for
Sn in In. They found no significant deviation from the T? law for any of these systems.

Richter and Merkens (RWTH, Aachen) developed a flowing junction cell for the
measurement of diffusion coefficients using a Savart Interferometer which they had
tested on TEXUS 8. They attempted to use this cell on the D-1 mission to measure the
interdiffusion of NaNO,-AgNQO,, but technical difficulties prevented them from being
able to locate the phase boundary of the molten system.

Merkens, Richter, Golbach, Jurek, Klessascheck (RWTH, Aachen) next attempted to
measure the ionic diffusion in the molten KNO;-AgNO, eutectic salt system at 5 different
temperatures ranging from 150°C to 330°C using real time holography. The molten salts
were injected into a flow cell for each run. Unfortunately, bubble in the melt made it
difficult to extract the holographic data and, consequently, diffusion coefficients at only
two temperatures were obtained. These values were substantially lower than ground
based measurements, again demonstrating the necessity of making this type of
measurement in space, but it was not possible to test the T law for salt systems with only
two datum points.

Robert, Lefaucheux, and Bernard (P&M Curie University, Paris) measured the diffusion
coefficients of aqueous solutions of glycine, valine, and lead nitrate at three different
concentrations on the D-2 mission using real time optical holography. The experiment
was activated by pulling out a thin metal sheet that separated the portion of the cell
containing the solute from the pure solvent portion. In all cases the diffusion coefficients
became smaller with increasing concentration. For valine and glycine the diffusion
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coefficients measured in flight were slightly higher than the ground control, but for lead
nitrate, the space value was twice as high as the ground control. This later effect was
unexpected and is still being investigated. It is possible that the fluid motion imparted by
removing the sheet separating the two chambers produced unwanted mixing in the flight
sample. Such mixing would have been suppressed in the ground control experiment
because of the large stabilizing density difference between the two liquids.

Urbanek and Hehenkamp investigated the diffusion of Ni in molten Cu, Cu-Al and Cu-
Au. A single crystal of Ni was diffusion bonded to the Cu alloys and the melt was held at
1150°C so that the Ni remained solid. This was done to assure a plane diffusion front at
the Ni source. The Ni that dissolved into the Cu alloy melt was allowed to diffuse
through the sample until it was quenched. The distribution of Ni was determined by
electron microprobe tracing. The measured diffusion coefficients again were
significantly lower than those measured on the ground. However, the isoconcentration
profiles show more Ni in the middle of the Cu and Cu-Ag alloys and the interface
between the Ni single crystal and the melt shows a bulge in the middle. This suggests
that convective flows must have occurred along the outer surface of the melt toward the
Ni interface with a return flow through the core of the sample. This type of behavior
would be expected of Marangoni flows, except that, in this case, the sample had been
coated with a 200 micron thick layer of alumina skin that had remained intact. The
possibility of second order Marangoni flows that can occur without a free surface has
been speculated, but no such flows have ever been observed directly.

A follow-on experiment to measure self-diffusion in molten Sn at five temperatures up to
1622K was carried out on MSL-1 by Itami et al.(Hokkaido University) Sn'* was used as
a tracer and its distribution was determined by SIMS. They found that the diffusion
cocfficient varied as T'*' for their data and T for all microgravity data.

Using a combination of rocket experiments along with an experiment on MLS-1, Uchida
et al. (Ishikawajima Heavy Industry, Inc. Ltd.) measured the diffusion of PbgsSn,,Te-
Pb,,Sn,,Te over a temperature range of 1223K (melting) to 1573K. This composition is
of interest as an infrared detector material, but it is difficult to grow by directional
solidification because it is subject to double diffusive instabilities. Consequently, the
diffusion coefficient had not previously been determined. Their combined set of
experiments determined an expression D = 6.7x10° (T / Tmelt)*® m/s.

Yoda, Masaki, and Oda (NASDA) measured the diffusion coefficient of Sn as a function
of temperature on SL-J and on MSL-1R. Their results fall right on the same curve as

Frohberg's data.

However, on SL-J, Yamamura, Yoda, Ohida, and Masaki (Tohoku University) doped
LiCL-KC] eutectic with a trace quantity of AgCl and measured the diffusion of Ag+ using
an electropotential method over a temperature range of 640K to 860K. Their data
seemed to follow an Arhenius curve.
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Dan and Muramatsu (National Research Institute for Metals, Japan) attempted to measure
the interdiffusion of Ag and Au on SL-J. However, the sample appeared to have been
convectively mixed by Marangoni convection.

On SL-1 Braedt, Braetsch, and Frischat (Technische Universitat, Clausthal, Germany)
measured the interdiffusion between Na,0-3Si0, and Rb,0-3Si0, glass melts. The
sample consisted of stacked cylinders of glasses having different compositions and were
heated to 1180°C with an effective processing time of 1370 seconds. The concentration
profiles were obtained using an electron microprobe. The microgravity samples
exhibited concentration profiler parallel to the original interface, while the ground control
samples had wavy profiles indicative of convective flows. The interdiffusion coefficient
at 1180°C fits the Arhenius plot with the results of TEXUS missions and ground based
results at lower temperatures.

The removable of bubble from a viscous glass is difficult enough on Earth, but becomes a
major problem in micro-gravity without the assistance of buoyancy forces. For this
reason, it is necessary to measure diffusion coefficients of gasses in glass melts. During
the D-2 mission Jeschke and Frischat (Technische Universitat, Clausthal, Germany)
measured the diffusion of He in a model glass system by observing the shrinkage of a
preformed He bubble in a cylindrical glass sample as it was heated to 1100°C .

Thermodiffusion, sometimes called the Soret effect or the Ludwig effect, results from the
migration of atoms of different species in a thermal gradient. One of the techniques used
for isotope separation is based on this principle. It can also be important in the
solidification of multicomponent alloys by shifting the composition at the interface as the
solidification proceeds, although in most Earth-based processes, the effect of thermal
migration is completely overwhelmed by convection and it is generally ignored.
However, the effect may have been responsible for shifting the composition away from
the eutectic point in several microgravity eutectic solidification experiments.

Malmejac and Praizey (CENG, Grenoble) demonstrated the effectiveness of
microgravity for measuring thermodiffusion (Soret effect) on Spacelab-1. They loaded
Sn with 0.04 Wt% Co into zirconia shear cells and subjected them to a 200K/cm thermal
gradient for six hours. A graphite piston kept the melt in contact with the walls to prevent
unwanted Marangoni convection. The cells were then sheared into 6 segments which
were analyzed for Co concentration by neutron activation. Similar cells were processed
in a thermally stable configuration (hot over cold) on the ground. The flight samples had
two time as much Co in the hot end as in the cold end; whereas the ground control
samples showed a constant Co concentration throughout. From the flight samples, the
investigators were able to determine the heats of transport and the Soret coefficients for
both the Co in Sn and for the different isotopes of Sn. A follow-on experiment on D-1
confirmed the isotopic heat of transport for Sn and obtained the heat of transport for Ag'®
and for Bi*” in Sn.

Bert and Dupuy-Philon (Matariaux Université Claude Bernard, Lyon)investigated the
thermomigration of the Ag+ and K- ions in the molten salt system, AgL,-KI, , near the
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eutectic composition on D-I and D-2 by potential difference between electrodes at the hot
and cold ends of the sample. This measurements is then related to the Soret coefficient.
The Soret was much smaller than anticipated so that the D-1 experiment could only
determine that the Soret coefficient is positive (the heavier Agl migrated to the cold side
of the cell). The longer duration of the D-2 experiment permitted the first accurate
measurements of the Soret coefficient for this system.

Undercooling Experiments

The equilibrium melting (freezing) point is the temperature at which there is no
difference between the free energy of the melt and solid, thus a solid can remain in
equilibrium with its melt at this temperature indefinitely. A solid will began to melt as its
temperature is raised to the equilibrium melting point, but a melt will not began to freeze
at this temperature. The interfacial energy between the embryonic solid and the liquid
must somehow be found. This required energy is proportional to the interfacial area, or
the square of the radius of the solid, assuming it is a sphere. However, the tighter binding
energy of the solid, which is proportional to the cube of its radius, can lower the free
energy. According to this elementary model of nucleation, the free energy of a potential
nucleus initially increases with size because of the extra interfacial energy, but eventually
decreases with size due to the increased solid bond formation. Therefore, there is a
critical size for a viable nucleus and a free energy barrier that must be overcome to form
a viable nucleus. Near the equilibrium melting point, atoms or molecules in the liquid
start to form clusters, which are broken up by thermal agitation. As the temperature is
lowered below the freezing point these clusters can grow larger before they are broken up
by thermal agitation. The probability that a sufficient number of particles will come
together to form a viable cluster before it is broken up by thermal agitation increases with
decreasing temperature. If there are solid surfaces present, especially if they are
crystalline in nature, they offer a low energy nucleation site and the solid can form by
heterogeneous nucleation at temperatures close to equilibrium melting temperature, or
with very little undercooling. If there are no low energy nucleation sites, the melt will
continue to undercool until it nucleates homogeneously. Thus, if low energy nucleation
sites can be avoided, it is possible to undercool a melt by as much as 20-25% of its
absolute melting temperature. When nucleation in a undercooled melt occurs, the heat of
fusion is quickly given off heating the melt back to its equilibrium melting point, a
phenomenon known as recalescense. However, if the melt is undercooled to the point
that the heat of fusion is not sufficient to raise the temperature back to the melting point,
the melt is said to be hypercooled.

In recent years, great deal of attention has been given to rapid solidification processing.
If the heat can be removed rapidly enough so that the atoms in the melt simply do not
have time to arrange themselves into orderly crystalline form, they more-or-less become
frozen in place. Such processing has led to amorphous or glassy metals, quasi-crystals
with 5-fold symmetry, and a variety of non-equilibrium phases, some with interesting
properties such as the niobium based A-15 superconductors. The ability to form
metastable phases is greatly enhanced by starting with a deeply undercooled melt.
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Therefore, there is a great need to understand the properties of melts in the undercooled
state.

There are essentially two ways to eliminate the low energy nucleation sites; eliminate
physical contact with the melt, or encase the melt in an amorphous, non-reacting flux.
The latter has been demonstrated by Whittmann, Gillessen, Otto, and Roestel (DLD,
Koln) on D-2. By suspending melts in B,0,, they were able to undercool eutectic Ag-Ge
by 100K below its melting point of 924K and Fe -22Wt% Ni was undercooled by 392K,
into the hypercooling regime. When this system is undercooled, the &-ferrite phase is
nucleated first. However, during recalescence, the released heat of fusion brings the
undercooled melt back to the melting temperature and the y-austenitic phases forms.
However, when hypercooled, as was the case here, some of the original d-phase is
retained.

Free falling droplets in drop tubes have been deeply undercooled, but it is difficult to
measure the thermophysical properties of a falling drop. An orbiting spacecraft provides
an opportunity to study a free falling drop, but because the drop and the spacecraft do not
fall at exactly the same rates, a small non-contacting body force is required to keep the
droplet in position. Non-contacting positioning forces can be electrostatic,
electromagnetic, acoustic, or aerodynamic.

Electromagnetic position is particularly suited for the study of undercooled metallic
melts in space. While it is possible to levitate metallic melts in normal gravity, the
sample becomes distorted to the point that it is not possible to obtain surface tension and
viscosity data from drop oscillation and measuring volume changes with temperature
becomes difficult. Also, the heat input from the induced currents required for levitation
interfere with the undercooling of the sample. These difficulties are avoided in a
microgravity environment.

An early attempt to use electromagnetic levitation to study undercooling on orbit was
made on MSL-2 using a modified version of the EM levitator developed for use on the
SPAR suborbital rocket program, prior to the time the Shuttle became operational.
Flemings (MIT) provided 6 samples but a coolant loop problem prevent useful data from
being attained.

The TEMPUS facility was developed by the Institute for Space Simulation, Cologne,
Germany. It uses a quadrapole coil for positioning and a dipole coil for heating. Since
very small positioning forces are required in a microgravity environment,
electromagnetic-driven flows for positioning can be minimized. The sample chamber can
be evacuated, or backfilled with an inert gas to suppress evaporation of samples with high
vapor pressure. The system was first flown on the IML-2 mission. Unfortunately, most
of the samples had gotten contaminated during their preflight storage and could not yield
the desired thermophysical data. Also, some positioning instabilities were discovered.

As aresult, the facility was reworked and was reflown on the MLS-1 and MLS-1R
flights.
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Egry, Lohoefer, Seyhan, and Feuerbacher (DLR, Koln) measured the viscosity and
surface tension of two alloys, CogPdy, and Pd,;Cu,Si,s. The first was chosen because it
has a low viscosity and deeply undercools; the second is a good glass former and
consequently has a high viscosity. Surface tension is obtained by pulsing the positioning
coils to cause the drop to oscillate. The frequency of oscillation is related to the mass and
- surface tension by Rayleigh’s formula and the viscosity can be obtained by the rate of
decay of the oscillations. (Since Rayleigh’s formula only applies to spherical drops, this
method cannot be used with the distorted melts levitated in normal gravity.) Egry was
able to run 30 heating and cooling cycles on the Cog,Pd,, alloy, undercoolings as much as
350K were obtained, well into the hypercooling regime. The surface tension was found
to decrease linearly with temperature while the viscosity follows an Arhenius behavior.

The eutectic point of the Pd,;Cu,Si,¢ alloy was used to calibrate the pyrometer. The
addition of Cu supposedly improves the glass forming ability of this system, but lowers
the amount of undercooling that can be achieved to about 70 K, probably to the formation
of CuO on the surface. This also may be responsible for the increased scatter in the
surface tension and viscosity data. The surface tension again is seen to decline linearly
with increasing temperature, but the scatter in the viscosity is such that no distinction can
be made between Arhenius, Vogel-Fulcher, or power law behavior.

The changing resistivity of the sample with temperature changes the inductance of the
TEMPUS heating coil, thus by measuring the voltage, current, and phase of the heating
current, resistivity could be inferred. Calibration to obtain the coil constants was done
with samples of known resistivity. The resistivity of the Cog,Pd, alloy was found to

increase linearly with temperature in both the solid and liquid state, but with a higher
value and slightly higher slope in the case of the liquid.

Solid Cog,Pdy, is a good ferromagnet with a Curie temperature of 1250 K. The measured
inductance in both solid and undercooled melt exhibited a dramatic change when cooled
below 1360 K with a sharp increase at 1250K. This increase was interpreted as magnetic
ordering. There had been speculation as to whether a ferromagnet could exist in the
liquid state. There appears to be no fundamental reason to believe that it could not; its
just that the Currie temperature of every known magnetic material happens to lie below
its melting point. This is the first evidence suggesting that ferromagnetism does indeed
exist in the liquid state.

In order to estimate the nucleation probability, and thus the cooling rate required to form
a metallic glass, it is necessary to know the difference in the Gibbs free energy between
the solid and the liquid state as well as the viscosity and the interfacial energy. The
Gibbs free energy is the sum of the enthalpy of the liquid plus the product of the entropy
of fusion and temperature. The enthalpy of the liquid can be obtained by integrating over
the heat capacity of the liquid.

Fecht (Universitat Ulm) and J ohnson (California Institute of Technology.) developed a

non-contact method for measuring the heat capacity, thermal conductivity, and total
hemisphere emissivity of a small spherical sample using A.C. calorimetry. The heating
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field is modulated at frequencies ranging from 0.05 Hz to 0.2 Hz. The heat capacity is
related to a correlation function of modulation frequency, the internal (heat up) relaxation
time, and the external (heat loss) relaxation time. Also, thermal expansion and volume
change on melting can be determined by direct observation of the suspended drop.

This technique was applied by Fecht and Wunderlich (TU Berlin) to two glass-forming
alloys, ZrgsAl, sCuy, sNij and Zr Al Cu,NiyCos. The ZrgsAl; sCuyy Niyg system exhibited
an large increase in heat capacity near the glass transition temperature, which was not
seen in the other system. This anomalous behavior is thought to be associated with some
liquid structure and is still being investigated. Also, the ratio of thermal conductivity to
electrical conductivity in the crystalline Zrg;Al, sCu,; sNijq System follows the
Wiedemann-Franz law, but the measured thermal conductivity in the undercooled state
was significantly higher. This departure could be a result of flows from electromagnetic
stirring, although the viscosity in this temperature range is so high that it cannot be
measured by the drop oscillation method.

Johnson, Lee, and Glade (California Institute of Technology) carried out similar
investigations on Zrs, NbyNi,, (Al (Cuys 4 and TisZr,,Al, sCu,;Nig. They also find a strong
increase in heat capacity with undercooling. The Tis Zr,;,Al, sCu,;Nig sample exhibited a
large anomaly in heat capacity just above the liquidus temperature. This was thought to
be the result of a possible phase separation in the melt.

Frohberg, Roesner-Kuhn, and Kuppermann (TU Berlin) developed a real time method for
analyzing surface oscillations of liquid levitated drops based on a FFT analysis of the
temperature-time signal and applied this technique to the measurement of the surface
tension of pure zirconium, several stainless steel alloys, and glass forming alloys
Zr,,Ti,,Cu,;Nig and Zr,Cu,, Niy5 NdsAl,p. In these glass forming alloys, the viscosity
increases so rapidly with decreasing temperature that surface oscillations cannot be
detected, thus making surface tension measurements in the undercooled state impossible.
However, measurements at higher temperatures can be used to infer surface tension in
this region. Unlike other systems in which surface tension increases an temperature is
lowered, the Zr;Cu,, (Ni,; Nd;Al,, system exhibits a strong decrease in surface tension
with decreasing temperature. It is speculated that this anomalous behavior may be due to
a change in the surface composition as temperature is lowered. Al has a surface tension
near the lowest measured value and if it segregated to the surface, it would be the surface
active component.

Volume change with temperature is a basic measurement in glass formation. In most
materials (except for those that have open diamond-like structures), specific volume
decreases as the melt temperature is lowered and a sharp drop in volume is seen as the
crystalline solid is formed. As the temperature of the solid is lowered further, the volume
continues to decrease, but at a slower rate — reflecting the volumetric coefficient of
expansion for the solid. For glass formation, the nucleation of the crystalline phase must
be avoided and the melt continues to shrink in volume at the liquid rate past the normal
freezing temperature. When the glass transition temperature is reached (the point at
which the atoms or molecules no longer have sufficient thermal energy to freely move
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about each other) the material becomes a glassy solid rather than an undercooled liquid.
This transition is identified, not by an abrupt change in volume, but by a change in the
slope of volume versus temperature to reflect a volumetric coefficient of expansion more
typical of a crystalline solid.

Samwer and Damaschke (Universitat Augsburg) developed a special camera for
measuring volume changes in samples being processed in the TEMPUS. On the MSL-1R
mission they measured the volume vs. temperature of the glass forming alloy
Zr,,Ti,,Cu,Nig . They found two distinct slopes in the liquid phase; a smaller slope well
above the normal melting point, and a steeper slope beginning approximately 40°C above
melting point that continued past the melting point. The data did not extend to the glass
transition temperature because of poor contrast between the sample and the background.

Bayuzick, Hofmeister, Morton (Vanderbilt University) and Robinson (NASA MSFC)
used the TEMPUS on MSL-1R to investigate the effect of convective flows on
nucleation. The possibility of “dynamic” nucleation, perhaps the result of subcritical
embryonic clusters somehow being brought together by shearing flows to form a viable
nucleus, has been speculated, but no definitive experimental confirmation of whether or
not this is a significant factor in nucleation has been obtained. The electrostatic levitator
allows them to conduct repeated undercooling experiment on the same sample, thus
eliminating this source of variability. Their choice of materials was pure zirconium
because it has a high solubility for contaminants found in the bulk and in the high
vacuum environment and oxides, nitrides, and carbides do not form in the melt or on the
surface.

They measured the distribution of undercoolings where nucleation occurred with the
positioning coils set at the minimum power, and at the highest power. Numerical
modeling indicates that the flows are laminar at the lowest power setting with
characteristic velocities of 4 cm/s, corresponding to a Reynolds number of ~200. At the
higher power setting the flows approach the transition regime. They found no significant
difference in the undercooling statistics. However, in experiments in which the heater
power had been above 220 V, they found the samples would not undercool. Based on a
computation model of Flemings and Trapaga, it believed that the flows associated with
the higher heater setting caused cavitation and that the collapse of these cavitation
bubbles cause nucleation to occur.

Flemings and Matson (MIT) investigated the phase selection process by which
undercooled Fe-Cr-Ni steels solidify. Initially the 3-ferritic phase nucleates with the
characteristic recalescence signature and starts to grow; shortly thereafter, a second
recalescence is seen as the metastable & phase transforms into the stable y or austenitic
phase. However, it was observed that in microgravity , the second recalescence was
delayed by a considerable amount compared to samples levitated electromagnetically on
the ground. The decreased convection in microgravity is believed to be responsible for
this delay. This investigation has led to a new growth competition model to account for
the role of convection in the phase selection in the final solid.
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Herlach, Holland-Moritz, Kelton, Bach, and Feuerbacher attempted to determine the
maximum undercooling as well as the thermophysical properties of alloys that form
polytetrahedral quasicrystals with short range order. Since this order is similar to what is
believe to exist in the melt, there should be a low interfacial energy between the melt and
the solid, hence the degree of undercooling should be limited. Samples of Al,Cu,,Feg
and AlgCu,,Co,, were processed in the TEMPUS facility. Unfortunately, the samples
had become contaminated and no significant undercooling was achieved.

Optical Glass Formation

Single crystals have good optical transmission, but are impractical for many applications.
Multiple reflections from grain boundaries of polycrystalline materials make them totally
unsuitable for optical applications. Therefore, glasses, which do not have grain
boundaries, are used for the vast majority of optical systems. Grain boundaries also
represent regions where there are unsatisfied bonds and therefore are more vulnerable to
chemical attack. Thus glasses also find many applications as corrosion resistant coatings
or containers.

The crystalline state has the lowest configurational energy for most materials, hence is
the equilibrium state. The amorphous or glassy state is metastable, but can exist more or
less indefinitely if the viscosity of the material is high enough to prevent the atoms from
moving into their equilibrium crystalline configuration. Good glass formers are systems
that have high viscosities near the melting point so that, if crystallites are nucleated, they
cannot grow significantly while the material is being cooled to ambient. Glass formation
can always be enhanced by rapid cooling, but there is a limit to the rate at which heat can
be removed from a system, especially from larger systems. Also rapid cooling produces
large strains in the system which can produce optical distortion and possibly cracks or
other defects.

An alternative method for enhancing glass formation is to lower the probability of
nucleation. In order for a more ordered phase to form, an ordered cluster of atoms must
first form to serve as a substrate for the ordered phase to grow on. This can occur either
spontaneously in the melt (homogeneous nucleation) or the ordered phase can
heterogeneously nucleate on a foreign solid particle or on the crucible wall. The
probability of homogeneous is extremely small near the melting point, and does not
become appreciable until the material is cooled to some 20-25% below its absolute
melting temperature. Since viscosity increases exponentially with decreasing
temperature, eliminating heterogeneous nucleation sites can greatly decrease the cooling
rate required for glass formation, and thus the ability to form glasses in systems that do
not generally form glasses. There are a number of such systems that are of potential
interest because of their extended infrared transmissivity, their electro-optical properties,
or hosts for lasers.

Braetsch and Frischat (Technische Universitaet Clausthal, Germany) investigated the
nucleation and crystallization of glasses on the D-1 mission. Lithia-silica and Na,0-B,0;-
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Si0, glasses were formed in a glassy carbon crucibles at different cooling rates. The
glasses formed in space exhibited greater homogeneity than the ground control based on
variations in refraction analysis and microprobe analysis. The difference was ascribed to
the fact that nuclei that formed at the wall were not transported to the remainder of the
melt in microgravity. The crystalline phase Li,0-2SiO; in the lithia-silica system showed
a spherulitic growth under normal gravity, whereas a dendritic growth was observed
under microgravity. In the Na,0-B,03-Si0, system both micro-g and 1 g samples
displayed microstructure which could have been formed by a spinodal type phase
separation process, however, the micro-g sample was more fine-grained.

Soga (Kyoto University) heated a glass specimen contain Au particle in the Image
Furnace during the SL-J mission with the objective of obtaining the temperature-volume
relation and to analyze the flows as it melted. A large unexpected volume increase was
encountered near the glass transition temperature, bubbles formed in the specimen, and
devitrification occurred at the surface. (No further details were available.)

The ability to position and melt a sample without physical contact offers some unique
opportunities to extend the range of glass formation from ceramic systems by eliminating
potential nucleation sites that might exist on container walls. Also, many glass forming
systems are extremely corrosive in the melt and will easily become contaminated by the
crucible. Generally, such systems are not conductive enough in the melt to be levitated
and heated electromagnetically. Since they also generally require an atmosphere to
prevent loss of volatile components, acoustical levitation is an attractive choice.
However, difficulties have been encountered in attempts to use a resonance chamber,
such a the 3-axis levitator developed by JPL for the study of drop physics, when it is
necessary to operate over a wide temperature range. The single axis levitator technique,
which uses a reflector to set up a series of interference node is more tolerant of
temperature changes. It principal disadvantage is the weak radial positioning forces
which are provided by the Bernoulli effect; consequently samples are frequently lost.

The Single Axis Acoustic Levitator (SAAL), originally developed as a suborbital facility,
was flown on OSTA-2 and on D-1with samples prepared by Ray and Day (University of
Missouri-Rolla). Technical difficulties were encountered on OSTA-2 flight and no useful
results were obtained. On the D-1 mission, 2 samples of pressed gallia-calcia powder
were successfully melted, cooled into the glassy state, and retrieved. This low viscosity
glass was formed at a much slower cooling rate (2 to 3 times slower) in space than is
possible in a crucible, which reflects the absence of low energy nucleating sites on the
levitated sample. A sample of soda-lime glass containing a large void was also deployed
with the objective of producing a concentric shell suitable for use as an inertially
confined fusion target. The sample was successfully melted and recovered, but the
bubble escaped during the process.

A more sophisticated acoustical levitator furnace was flow on SL-J. Hayakawa
(Government Industrial Research Institute, Osaka) and Makihara (Kohei Fukumi)
successfully processed a CaO-PbO-B,0; sample and two gallia-calcia-germania
samples, although they reported that some bubbles remained in the samples.
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Miscellaneous Experiments

Fukuzawa and Furuyama (National Institute for Metals, Japan) set out to analyze the
mechanisms by which Al, Si, and Mn act deoxidizing agents for steel. An Iron alloy
containing about 1% of each of these elements was rolled into a 0.1 mm sheet which was
sandwiched between 5 mm diameter iron rods containing different levels of oxygen
content. These samples were then placed in alumina crucibles and sealed under 100 Torr
Ar in a Ta cartridge. The cartridges were heated in the Large Isothermal Furnace on SL-J
at 1600°C for 54 minutes and then quenched. The results appear to be inconclusive.

Wada et al. (Nagoya University) and Dohi (Shizuoka Institute of Science and
Technology) investigated the production of nano-particles in microgravity on SL-J. Four
glass bulbs were prepared in which 50 mg of Ag was attached to the W filament. The
bulbs were then filled with different pressures of Ar or Xe. The filaments were heated to
~ 1150°C and the brightness and smoke evolution was recorded on video. Particles
ranging from 20-50 nm were deposited on the walls of the bulbs containing Ar. Then
bulb containing Xe produced a burst of smoke that, according to the investigators,

« indicates a local accumulation of vapor atoms with pressure higher than the
surrounding gas, which cannot be interpreted in terms of a conventional diffusion model
of a Langmuir sheath”.

Assessment of the Science
Metals, Alloys and Composites

Many of the earlier flight experiments in this field were exploratory in nature and yielded
results that were difficult to interpret. As a result, their findings were reported in
conferences and often were never published in the mainstream literature were they were
likely to be read by scientists not involved in the space program. As the investigators
became more sophisticated and knew what lines of investigation were more likely to pay
off, they the program became more productive scientifically.

The primary advantages of studying solidification of metallic systems in microgravity is
the ability isolate gravitational from non-gravitational effects, to make properties
measurements that are difficult to make accurately in the presence on gravity, and to test
fundamental theories that have help transform metallurgy from an art to a science over
the past 40 years.

Most of the theories that guide our laboratory experiments and that we use to design
industrial processes contain simplifying assumptions, such as ignoring convection. Such
assumptions are necessary in order to be able to establish general laws that extend over a
wide range of conditions; whereas the addition of convection would generally be
applicable to a specific situation. Of course, since convective flows are a fact of life in
most process carried out on Earth, the theories do not always apply directly unless the
effects of convection is modeled into the process for a specific task (which is becoming
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more common give the computational capabilities now available). Still many of the
theories we use have never been rigorously tested because before flight opportunities
became available, we had no way to impose the conditions assumed by the theory.
Observed discrepancies were generally explained away by convective effects that we not
able to control. But this leaves a nagging question; are there subtle errors in the theory
because something important was left out? Or were the simplifying assumption that were
made too unrealistic? These are important issues that need to be settled.

The importance of microgravity experiments such as Glicksman’s work on dendrite
growth is to assure that the basic theories used for modeling microstructures in castings
are on firm foundations, or at least to understand where their weaknesses lie. Obviously,
these theories will have to be modified to account for convection if they are to be used in
terrestrial applications, but it is essential to be able to start from a theory that is at least
fundamentally correct.

The ability to isolate gravitational from non-gravitational effects has unmasked many
subtle, but important effects and provided much new insight into modeling and
controlling processes. For example, it was generally not suspected that Soret diffusion
could be instrumental in changing the composition of the system during a directional
solidification process. The effect did not become apparent until the convective flows
were essentially eliminated, but it operates just the same and should be considered in a
process model if good accuracy is required. Similarly, the profound influence of
interfacial effects that produce phase separation in immiscible systems were not
appreciated until the effects of gravity were removed.

The bibliography contains 456 total publications of which 135 are in peer reviewed
journals.

Crystal Growth

The quasi-steady acceleration requirements for diffusion-controlled solutal transport have
proven to be very stringent, expecially for Bridgman growth of materials with high
Schmidt numbers (ratio of viscosity to chemical diffusivity) that are characteristic of
many semiconductor systems of interest. The Shuttle is not a practical platform for this
class of experiments since they require close alignment of the net residual acceleration
vector with the furnace axis over a period of days. This was attempted on USML-1, only
to be thwarted by an unsuspected acceleration of less than a half micro-g from the
venting of the flash evaporators. Hopefully, the environment on the ISS will be more
suited to this important crystal growth technique.

Melt growth experiments that used the traveling zone or float zone technique are more
tolerant of the residual acceleration because of the much smaller melt region and because
some gentle convective mixing in the molten region can actually be beneficial so long as
it does become unsteady. The Japanese as well as the Europeans have had outstanding
successes in growing various semiconductor systems up to 20 mm in diameter using the
float zone process in the mirror furnace. For reasons that are not clear, US Investigators
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have not pursued this process in microgravity. Perhaps the most important contribution
from the melt growth experiments in microgravity was the clear demonstration of the role
of wall effects in the formation of twins and other growth defects. Even in enclosed
growth systems the dislocation densities seemed to be generally lower and the mobilities
seemed to be higher than in the ground controls. Whether this effect was a result of less
convection at the growth interface, partial wall contact, or of lack of hydrostatic pressure
is not clear, but the reason begs for an answer.

Similarly, crystals grown by both closed tube physical and chemical vapor transport
continue to exhibit better uniformity and lower defects when grown in microgravity for
reasons that are not well-understood. Also crystals grown from aqueous solution under
diffusion limiting conditions were of outstanding quality, virtually free of the
dislocations, inclusions, and other visible defects. All of these results indicate that
convective flows in the vicinity of the growth interface are somehow responsible for the
generation of growth defects, even the exact mechanism is not understood. This would
appear to be a fruitful topic for the theoreticians to consider while waiting for the next
experimental results to come from the ISS.

Crystals grown from aqueous solution under diffusion controlled conditions were also of
outstanding quality, especially when the supersaturation could be controlled using the
cooled sting technique. The zeolite crystals also showed some encouraging results.

Altogether the crystal growth experiments produced a total of 324 papers including 208
journal articles.

Measurement of Thermophysical Constants

Anyone involved in process modeling will applaud the possibility of obtaining accurate
thermophysical data, especially data on the properties of high temperature melts.. The
most disturbing aspect of the results from diffusion measurements in microgravity is the
realization of how inaccurate our present data base on properties of molten systems really
must be. The fact that diffusion coefficients of melts measured in space turn out to be
typically 30-50% lower indicates that virtually all of diffusion measurements for molten
materials are in error and would imply similar errors for thermal conductivities and other
transport-related properties. Since it would hardly be practical to try to remeasure all of
our liquid phase thermophysical properties in space, we should carefully re-evaluate our
laboratory measurement techniques with the aim of either eliminating or accounting for
convective transport.

Of equal importance is the new microgravity data on the temperature dependence of the
diffusion coefficient. For the first time, these data are sufficiently accurate to establish
that liquid phase diffusion, at least in some molten systems does not follow an Arhenius
type behavior, indicating a substantially different mechanism from solid state diffusion.
Establishing the temperature behavior of various transport coefficients of a variety of
melts will give new insight into the theory of liquids as well as provide benchmarks for
such theories to predict.
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Finally, the amount of thermophysical data that could be extracted from a levitated melt

without contact is truly impressive as well as the insight such data gives to the behavior
of materials in the undercooled state.

The bibliography includes 173 papers reporting on the measurement of thermophysical
properties of which 76 are journal articles.

Optical Glass Formation

Despite the potential for being able to undercool corrosive melts without physical contact
in microgravity in order to form glasses of unique composition, such experiments have
been hampered by the lack of a reliable levitator. Several attempts at levitating such
melts using acoustic pressure have produced only limited success because of instabilities
that occur as the temperature is changed over a wide range. Consequently, this important
class of experiments has received little attention in the recent microgravity program. In
spite of this limited activity, the Spacelab experiments generated 46 papers including 28
journal articles.

New Technology and Technical Spin-offs

Unless the cost of going to space can be dramatically reduced, most of the technological
payoff from the microgravity materials science program will have to come from applying
the knowledge gained in space to Earth-based processes. Knowing that the basic
principles upon which most of our processing technology is based together with the
prospect of obtaining more accurate thermophysical data, will improve process modeling
resulting in higher quality, lower cost product. The Europeans are making extensive use
of process modeling to substitute lower cost precision casting for machining in
automotive frames, engine parts, and in fittings used in the A330 Airbus. They have also
used data obtained from microgravity experiments to develop a continuous casting
process in which Marangoni convection is used to balance sedimentation in order to get a
uniform dispersion of bismuth particles in an aluminum-silicon alloy for use in self-
lubricating bearings.

Crystal growers are learning about the effects of convection from the microgravity
community and are now making more use of static and rotating magnetic fields in order
to control unsteady flows. They too are now making extensive use of computational
modeling to design their processes to achieve computational control. Given the
deleterious effects of wall contact, new techniques may evolve that use a “soft” wall or
other method for avoiding this problem in terrestrial growth processes.

Traditional methods for measuring transport port properties of molten systems certainly
need to be reexamined and calibrated against measurements made in microgravity.
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Biotechnology

The Biotechnology investigation carried out on Spacelab Missions include biomolecular
crystal growth, electrokinetic separations, electrofusion, and the applications-oriented
biotechnological research being carried out by the NASA-sponsored Centers for Space
Commercialization. The vast majority of the experiments have been devoted to the
growth of biomolecular crystals such as proteins, nucleic acids, and viruses. The more
fundamental experiments dealing with living organisms, such as those carried out in the
Biorack will be covered under Life Science.

Biomolecular Crystal Growth
Background

The biological activity of a protein (or other biological macromolecules) depends on its
three-dimensional conformation or structure. Knowing this structure not only provides
important clues to understanding of the function of living organisms at the molecular
level, but also offers the means of directly altering or blocking the action of certain
unwanted proteins or viral particles associated with a disease state. This intervention
requires finding its active site and then finding or designing a molecule that fits into this
site to render it inactive, much like fitting a key into a lock. In fact, many pharmaceutical
agents operate in this manner. Until recently, effective drugs had to be sought out by
intuition and much trial and error testing. Now it is becoming possible to design a drug
for a specific task by knowing the structure of the target molecule. It is much easier to
design a key to fit a lock if one knows the structure of the lock. X-ray crystallography
remains the most powerful (and, for large macromolecules, the only) method for
determining the three-dimensional structure of such molecules.

When a crystal is illuminated by an X-ray beam, the beam is reflected by the various
planes of atoms in a particular direction according to Bragg’s law, which relates angle
between the incident beam and the reflection to the lattice spacing of the planes
producing the reflection. The array of Bragg reflections forms a diffraction pattern that
can be recorded, either on film or electronically. Mathematically, this diffraction pattern
is equivalent to a complex Fourier transform of the three-dimensional electron density
map of the atoms in the unit cell of the crystal, which happens to be the protein molecule
of interest. In principle, the Fourier transform can be inverted to obtain the electron
density map of the protein molecule from which, with a lot of skill and patience, the three
dimensional structure of the molecule can be inferred.

Unfortunately, present technology, i.e. the lack of a coherent X-ray source such as an X-
ray laser, allows us to record only the intensity of the Bragg reflections which
corresponds to the real part of the complex Fourier transform; the imaginary part
containing the phase information is lost. One method for recovering the lost phase
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information, requires the growth of additional crystals in which a heavy metal, such as
mercury, is incorporated into the molecule of interest. Because of the large number of
electrons associated with the heavy metal atom, it acts as a reference point of zero phase
and, by comparing the diffraction patterns with and without the heavy metal atom, the
phase information can be recovered. Pioneers in this field, such as Nobel Laureates Max
Perutz and John Kendrew, spent many years developing this technique and were able to
solve the structure of some of the simpler biological-macromolecules (hemoglobin and
myoglobin), which earned them the 1962 Nobel Prize in Chemistry. Since then, at least
27 Nobel prizes have been awarded for work in this field.

It should be appreciated that before NASA got involved in this field, the structures of
only a few hundred unique proteins had been solved. With the advent of powerful new
computers, ultra bright synchrotron X-ray sources, and sophisticated data collection
methods, the number of unique protein structures that have been determined has risen
dramatically. However, the ability to obtain crystals of sufficient size and internal order
has now become the limiting barrier in this field of research.

Microgravity's Contribution to Protein Crystallography

The protein crystal growth experiment developed by Walter Littke (University of
Freiburg) that was carried out during the first Spacelab mission may prove to be the
single most significant experiment in the Spacelab program. Littke reported that his
space-grown crystals of beta- galactosidase grew 27 times (by volume) larger that his
ground control crystals, and that his lysozyme crystals grew 1000 times larger . Althou gh
the crystals of beta-galactosidase were still too small to provide meaningful X-ray
diffraction data, this was the first real indication the microgravity could significantly
improve an Earth-based process.

When Charlie Bugg, then the Associate Director of the Comprehensive Cancer Center at
the University of Alabama in Birmingham, learned of Littke’s result, he immediately
began preparations for a flight experiment involving proteins of interest to his Center. He
also recruited several major pharmaceutical companies to join in a collaborative effort to
explore the use of microgravity to obtain better crystals of proteins they were attempting
to structure, which resulted in the formation of the Center for Macromolecular
Crystallography, supported by the NASA Commercialization program.

A few simple try-and-see protein crystallization experiments were carried out during
Shuttle flights prior to the Challenger accident. By the time the Shuttle flights resumed,
MSEC, with Teledyne-Brown Engineering had developed a semi-automated Vapor
Diffusion Apparatus (VDA) that deployed 20 individual hanging drop protein
crystallization experiments. Several of these trays can be inserted into the middeck
locker Refrigerator/Incubator Modules (R/IMs) developed by McDonnell Douglas to
support their earlier electrophoresis experiments. The individual cells in the VDA are
equipped with a double barreled syringe so that the protein could be stored in one barrel
and the precipitating agent in the other to prevent premature nucleation and
crystallization before the experiment was in orbit. The solutions were mixed by a crew
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member repeatedly extruding and withdrawing the two fluids. After mixing, a small drop
of the mixture is left hanging in a small chamber surrounded on three sides by a porous
medium containing a higher concentration of precipitating agent. The water in the
hanging drop diffuses through the vapor space to equilibrate against the higher the
concentrated precipitating agent in the porous medium, thus providing the driving force
for crystallization.- Before de-orbit, the crew member manually retracts the drops
containing the crystals back into the syringe and a plunger seals the end of the syringe for
the trip back home.

The first Shuttle flight after the Challenger accident (STS-26) yielded crystals of 4
different proteins that were shown to have better diffraction resolution than the best
crystals of these proteins that had ever been grown on Earth. This feat is even more
remarkable, considering that the crystals produced in only a handful of space experiments
are compared with the best crystals of these particular proteins that have been grown in
thousands of experiments by the world's most qualified researchers whose professional
success depends heavily on obtaining the molecular structure from the X-ray diffraction
data from these crystals. These results formed the impetus for the present major effort in
protein crystallography sponsored by NASA and ESA. (See DeLucas, et al.,Science, 246:
(1989) 651 - 654.)

It should be understood that one does not solve a protein structure with one or two
crystals. Because of the very complex structure of large biological macromolecules,
many thousands of data points must be taken in order to obtain the inverse complex
Fourier transform of the diffraction pattern. Crystals also tend to degrade in the X-ray
beam, so a number of crystals may be required to obtain a complete data set. The process
may then have to be repeated with a heavy metal additive to recover the lost phase
information. Hydrogen atoms do not have enough electrons to show up in the diffraction
pattern, so critical hydrogen bonds must be inferred from complementary structure.

Often the available data is not sufficient to accurately describe the critical shape and bond
structure in the active area, so there is a constant search for higher resolution data in order
to refine the structure. Finally, if a drug is to be designed to block the active site of a
particular protein or other biological macromolecule, additional crystals must then be
grown in which the candidate drug molecule, called the substrate, is incorporated into the
active site of the target protein in order to check the fit. Therefore, it can be appreciated
that a more-or-less steady supply of high quality crystals may be required to obtain the
structure of a protein molecule.

If space is to play a significant role in obtaining the structure of biological
macromolecules, a permanent facility in space, such as the Internal Space Station, will be
required. Many of the proteins that did not crystallize, or did not grow large enough
crystals to analyze during the times available to the various Shuttle missions, should
produce results on the Space Station. Since protein crystals have a limited storage time,
they may degrade before they can be taken back to Earth during the planned crew
exchanges. Also, bringing them through re-entry g-loading may also degrade them (this
is still an open issue). Therefore, serious concern is being given to an on-orbit X-ray
analysis facility on the Space Station.
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In order to appreciate the advantages offered by space-grown crystals, something needs
to be said about the requirements needed to obtain good diffraction data from crystals.
The ability of a crystal to diffract X-rays depends on the size and shape of the crystal, on
the periodicity or regularity of the lattice points which locate the unit cells (long range
order), and how well the individual molecules in each unit cell are positioned and
oriented. The intensity of a Bragg reflection is proportional to the square of the number
of unit cells illuminated by the X-ray beam. Generally, a crystal must be somewhere
around 0.3 — 0.5 millimeters on a side to produce the required number of higher order
reflections needed to obtain high resolution data. However, with the very bright X-ray
sources now available from synchrotrons, it is becoming possible to work with smaller
crystals.

However, larger crystals don’t necessarily mean higher resolution or diffraction
efficiency. Defects such as dislocations, small angle grain boundaries, twins, or
inclusions eliminate large numbers of molecules from producing coherent reflections as
well as contribute to the incoherent noise background, thus reducing the signal to noise
ratio even at small diffraction angles. Diffraction efficiency is defined as the total number
of Bragg reflections at some level (usually 5 standard deviations) above the background
noise. Resolution is defined as the spacing of the highest index planes that produce
detectable Bragg reflections. Since Bragg’s law requires that the sine of half the angle
between the incident beam and the reflected beam be inversely proportional to the lattice
spacing producing the reflection, the largest angle at which reflections can be seen is a
measure of the resolution. Even if the lattice has good long range order, molecules that
are misoriented or slightly out of place at each lattice site will degrade the large angle
diffraction data needed to obtain the molecular structure to high resolution.

The space-grown crystals tend to show improvements both in terms of long range order
as well as better molecular orientation within the unit cells. Interestingly, a number of
space-grown crystals seem to last longer in the X-ray beam before degrading. This
increased radiation resistance could also be an indication of higher internal order in
which more molecular bonds are available to hold the structure together. It should be
emphasized that, even apparently incremental improvements of a fraction of an Angstrom
in resolution, can be crucial in locating the binding sites in the active region. The
increased resolution from the space-grown crystals has allowed the refinement of several
important molecular structures and, in some cases, the determination of structure for the
first time.

Results from the Protein Crystal Growth Program in the United States

Since the resources for protein crystal growth on orbit are small and since the
acceleration requirements needed to improve the growth of protein crystals does not seem
to be as stringent as for other fields of microgravity research, NASA-sponsored protein
growth experiments have been able to utilize the available space on a number of Shuttle
flights that were not dedicated to microgravity research, thus giving them many more
flight opportunities than ESA or NASDA experiments. Since many individual growth
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experiments can be carried on each mission, the 40 Shutde flights, including 8 Spacelab
flights and 6 MIR deployments, as of August 7, 1997, have produced many hundreds of
individual experiments. Some 183 different biomolecular systems had been investigated
(some only once, others repeatedly). Many of these individual experiments produced no
crystals or crystals that were too small for X-ray diffraction analysis (usually due the
limited flight time available on the Space Shuttle). A few experiments yielded crystals
that were inferior to those grown terrestrially, but 72 of these experiments produced
crystal that definitely had superior qualities. Of these 72 experiments, 34 produced larger
crystals of that particular system than had previously been grown on the ground, 14
experiments produced crystals with a new morphology, 40 experiments produced crystals
that had 10% or better diffraction efficiency (better signal to noise ratio indicating better
long range order, 9 experiments had less thermal motion (indicating better order in the
unit cell), 27 experiments had increased resolution up to 0.3 A, 4 had increased resolution
from 0.3- 0.5 A, and 14 had increased resolution by better than 0.5 A. A complete
summary of these experiments can be found on “Marshall Space Flight Center Protein
Crystal Data on the WEB”, http://199.254.187.151/.

The VDA mounted in a temperature-controlled enclosure, such as the R/IM, the CR/IM,
the Thermal Enclosure System (TES), or the Single locker Thermal Enclosure System
(STES), was the workhorse in the early part of the US through USML-2 when it was
replaced with more efficient hardware. Since the University of Alabama in
Birmingham’s (UAB) Center for Macromolecular Crystallization (CMC) had become the
original focal point in the United States for crystallizing macromolecules in space, they
offered Guest Investigator flight opportunities to both domestic and foreign collaborators
from industries and other universities. They not only maintained the VDA hardware, but
were also able to assist other investigators in preparing their samples for flight and in
analyzing the post flight results. Significant results from the various Spacelab missions
using the VDA are summarized below.

IML-1 (STS-42)

e Guest Investigator, H. Einspahr, (Bristol-Myers Squibb) reported larger crystals of 2
Domain CD4. No increase in resolution was noted.

e Guest Investigator, K. Ward (NRL), reported larger crystals of Bacterial Luciferase.
No increase in resolution was noted.

e Co-Investigator, A. McPherson (U. California), reported Canavalin crystals
that were comparable in size to 1g, with uniform high visual quality.
Increased reflections over resolution range (higher diffraction efficiency), but
no increase in resolution. Canavalin is the major storage protein of
leguminous plants and a major source of dietary protein for humans and
domestic animals. It is studied in efforts to enhance nutritional value of
proteins through protein engineering. It is isolated from Jack Bean because of
it potential as a nutritional substance. (In the next section, these crystals will
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be compared to those grown by liquid-liquid diffusion in the ESA cryostat on
this mission.)

e Guest Investigator, S. Aibara (Kyoto U.), reported a new monoclinic form of
Lysozyme crystals with different lattice parameters.

e Co-Investigator, D. Carter (NASA/MSFC, now New Century
Pharmaceuticals), reported a dramatic improvement in diffraction efficiency
over all Bragg angles for Human Serum Albumin. Crystals diffracted to
highest resolution ever obtained, including growth in gels. Human Serum
Albumin is the most abundant blood serum protein,; it regulates blood pressure
and transports ions, metabolites, and therapeutic drugs. It also has
multifunctional binding properties that range from various metals, to fatty
acids, hormones, and a wide spectrum of therapeutic drugs.

e Co-Investigator, A. McPherson (U. California), found a new hexagonal
crystalline form for Satellite Mosiac Tobacco Virus (SMTV) and collected the
first X-ray diffraction data on this form. The Satellite Tobacco Mosaic Virus
is the Spherical T=1 icosahedral satellite virus of the classical rod virus TMV,
and is a plant pathogen. Its important lies in the study of virus structure, RNA
structure and virus assembly. (In the next section, these crystals will be
compared to those grown by liquid-liquid diffusion in the ESA cryostat on this
mission.)

e Guest Investigator, L. Delbaere ( U. Saskatchewan), obtained two diffraction quality
crystals of anti-HPr fab fragment crystals. Unfortunately, the crystals began to
deteriorate while waiting to get time on the synchrotron. Even so, the data collected
was comparable to the crystals grown on STS-31, which had narrower mosiac spread
and diffracted to the same resolution as Earth-grown crystals with 10 times the
volume.

e Guest Investigator, G. Birnbaum, (NRC, Canada), grew Fab YST9-1 crystals
that exhibited slightly higher resolution with much higher diffraction
efficiency (higher signal to noise) throughout the resolution range. Fab
YST9-1 represents a class of antibodies that have specificity to polysaccaride
antigens, those that occur on cell surfaces. Thus, it can be used to recognize a
certain type of cell. ‘

Spacelab-J (STS-47)

e Guest Investigator, C. Betzel (European Molecular Biology Lab, Hamburg), obtained
the highest resolution ever obtained from a crystal of the receptor of Epidermal
Growth Hormone which allowed, for the first time, the evaluation of the real space
group by partial data collection. The space crystal diffracted to 6 A, which is an
improvement of 2-4 A over the best Earth-grown crystals. The receptor for the
epidermal growth factor is increasing in its importance as a prognostic factor for a
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series of human malignancies since many such malignancies are characterized by its
overexpression. Knowledge of the three-dimensional structure of this receptor would
open the possibility of tailoring appropriate drugs for the treatment of numerous types
of tumors. At the present time, however, the crystal structure of only one hormone
receptor (growth hormone) and none of the growth factor receptors have been solved.

e Guest Investigator, S. Aibara (Kyoto U.), repeated his IML-1 experiment with
lysozyme and again found the monoclinic form with different unit cell parameters.

USML-1 (STS-50)

L Co-Investigator A. McPherson obtained several large crystals of recombinant
canavalin. The crystals apparently degraded somewhat before they could be
analyzed, but even so, a slight improvement in resolution was seen.

1I. Guest Investigator, E. Arnold (Rutgers U.), obtained several large crystals of HIV
Reverse Transcriptase complexed with antibody (Fab) against gp4. Relative
Wilson plots showed the space crystals to be better ordered (less thermal noise) as
the limiting resolution was approached.

I1I. Guest Investigator M. Navia (The Althexis Co.) grew Human Proline Isomerase
crystals that were considerably larger than the ground control, large enough that
neutron diffraction analysis would be possible. No twinning or clustering was
observed in the space-grown crystals which is often a problem with these crystals
when grown in normal gravity. The space-grown crystals were optically clearer
and had sharper facets than the Earth-grown crystals. Unfortunately, they began
to degrade (edges began rounding) before X-ray analysis could be performed.
Even so, they exhibited significantly higher diffraction efficiency, but no
significant increase in resolution.

USMP-2 (STS-62)

¢ Guest Investigator, L. Delbaere ( U. Saskatchewan), repeated his growth
experiment with anti-HPr fab fragment crystals. Again he was able to grow
larger crystals with a significant increase in diffraction efficiency, but with no
significant increase in resolution. The detailed structure of the Anti-HPr Fab
Fragment protein would provide a picture of an antibody binding site that
recognizes a bacterial "foreign" protein antigen. By learning what antibody
binding sites look like we may better understand how antibodies function in
the immune system.

e Co-Investigator D. Carter repeated his Human Serum Albumin growth experiment.
Again he got larger crystals with higher diffraction efficiency, but no significant

increase in resolution.

ATLAS-3 (STS-66)
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e Co-Investigator E-K. Ossama (UAB) obtained crystals of Aldehyde Reductase that
exhibited higher diffraction efficiency, but no significant increase in resolution.

e Guest Investigator D. Eggleston (Smith-Kline Beecham) grew crystals of Bovine
Parathyroid Hormone that had higher diffraction efficiency, but no significant
increase in resolution.

ASTRO-2 (STS-67)

e Guest Investigator L. Delbaere ( U. Saskatchewan) obtained larger crystals of PEP
Carboxykinase that showed higher diffraction efficiency, but no significant increase
in resolution.

USML-2 (STS-73)

e No significant results were obtained from the VDA hardware on this mission because
the proteins degraded during the multiple launch delays.

One of the most significant experiments in the US-sponsored program was the set of
crystallization experiments performed in the glovebox in which Larry DeLucas, the
Payload Specialist on USML-1, was able to mix proteins and set up experiments on orbit,
very much as he does in his own terrestrial laboratory. He had developed a special set of
hardware that would allow him to monitor the nucleation and early growth and make
necessary adjustment when necessary. When the crystal appeared to be growing
properly, this glovebox hardware could be transferred to the Commercial
Refrigerator/Incubator Module (CR/IM) to provide thermal control during the rest of the
growth process. This apparatus was flown in USML-1 and USML-2.

Much was learned from the opportunity for a trained crystallographer to fly as a Payload
Specialist on the USML-1 mission. Four proteins that were crystallized with the
glovebox hardware had failed to crystallize in previous shuttle missions using the VDA
hardware. It was suspected that the mixing of the protein with the precipitant been
inadequate in the VDA, especially when the more viscous precipitants such as
polyethylene glycol were used. With the glovebox hardware, the Payload Specialist
could mix the protein and precipitant solutions thoroughly by stirring or by withdrawing
and re-extruding the solution from a Hamilton syringe. It was noted that many of the
growth system seemed to take longer to nucleate and grow than they did on the ground
and that many experiments had crystals that were growing nicely, but were still too small
for diffraction experiments when the mission was over.

For some experiments, a micro-manipulator was used to withdraw small seed crystals
grown on previous days with the glovebox hardware and inject them into a more
concentrated growth medium. This procedure proved to be straightforward in
microgravity. It was shown that a similar technique could be used in microgravity to
withdraw grown crystals and mount them in x-ray capillaries for analysis. Since the
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crystals are typically suspended within the middle of the protein drop, the most difficult
aspect of this procedure (withdrawing the crystal into the capillary) was easily
accomplished in microgravity.

It also became clear that high magnification microscopy with video transmission will be
extremely useful on future missions. This capability will allow crewmembers to display
results to scientists stationed on the ground so that they can aid in the decision making
process, thereby optimizing the chance of producing high quality crystals. Hopefully,
this demonstration will serve as a model for how such experiments will be performed on
the International Space Station in which the growth process can take full advantage of the
extended low gravity time.

Significant results using the glovebox hardware are:
USML-1 (STS-50)

e Principal Investigator, L. DeLucas, grew the longest crystal of monoclinic
Factor D ever grown, a form that is difficult to grow reproducibly on Earth.
Although, the space-grown crystal was only 1/3 as thick as the best Earth-
grown crystal, the diffraction intensity was comparable to the best Earth-
grown crystal, and it diffracted to 0.1A greater resolution. Also, the relative
Wilson plot indicated a significant improvement in internal order at the higher
resolution range. Using the X-ray data from the space crystal together with
previous Earth-grown crystals, the three-dimensional structure of Factor D
was worked out. This represents the first structure of a complement protein
ever determined at atomic resolution. (See Narayana, Structure of Human
Factor D: A Complement System Protein at 2.0 A Resolution, Journal of
Molecular Biology, 235 (1994) 695). Factor D is an enzyme necessary for
activation of the complement system that plays an important role in host
defense against pathogens.

e Malic enzyme is an NAD-dependent enzyme isolated from a parasitic nematode. It is
being studied to exploit the differences in the structure from the human form to aid in
the development of an antiparasitic drug. Guest Investigator, H. Einspahr (Bristol-
Meyers Squibb), obtained crystals of malic enzyme that were much smaller than
typical Earth-grown crystals. However, these space-grown crystals proved to be of
exceptional quality. A space-grown crystal only 1/5 the volume of an Earth-grown
crystal produced 25% more Bragg reflections and diffracted to 2.6 A resolution, an
improvement of 0.6 A. The relative Wilson plots also show a dramatic improvement
in internal order as the resolution limit is approached. The enhanced stability of the
space-grown crystals in the x-ray beam was documented with these crystal, which is
further evidence of better internal order (more bonds satisfied).

USML-2 (STS-73)
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IV.  Guest Investigator, S. Aibara (Kyoto U.), obtained lysozyme crystals that showed
slightly higher improved diffraction efficiency and resolution as compared to his
ground control, but were inferior to the best lysozyme crystals grown on Earth.

V. Duck delta II crystallin is a protein that is similar to the key enzyme that causes
the disease argininosuccinic aciduria. The three-dimensional structure of this
protein will lead to a better understanding of the metabolic processes involved in
this disease. The protein supplied by Co-Investigator L. Howell (Hospital for
Sick Children, Toronto) produced square pyramidal crystals rather than the usual
flat plates seen on the ground. However, the crystals appeared to be striated and
diffracted poorly. It is believed the protein was degraded by the launch delays
associated with STS-73.

Engineers at the UAB-CMC developed an improved second generation VDA-2, which
was flown on MSL-1 and MSL-1R. The primary difference between this new device and
the old VDA is the addition of a third barrel to aid in mixing the sample. After the
protein and precipitating agent are deployed as before, the drop is repeatedly sucked into
and extruded out of this third barrel. The VDA-2 carries 80 individual crystal growth
experiments in a CR/IM that provided temperature control.

Tt was known the crystals grown in the VDA-2 on the shortened MSL-1 flight did not
have sufficient time to grow large enough to produce useful data, so the experiments
were reactivated after the Shuttle landed in hopes of salvaging the valuable proteins.
None of the resulting crystals produced diffraction data that was superior to their ground
control. Consequently, the same set of proteins was flown on MSL-1R with spectacular
results. Eight of the ten growth systems produced diffraction quality crystals, 5 of that
produced the best X-ray quality crystals ever obtained. Some of the results from
investigators using the VDA-2 are summarized below.

¢ The Hyaluronidase crystals grown by M. Jedrzejas (UAB-CMC) diffracted 0.2 A
better than the best data ever collected on earth-grown crystals and these data are
being used to refine the structure for a vaccine against bacterial infections.

e Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a target for drugs to combat
Chagas’ disease provided by G. Oliva (University of Sao Paulo), produced crystals of
a different space group that diffracted to 2.0 A, an improvement of 0.8 A over the
best ground-based data. From these results, ground-based growth procedures were
modified to produce the new space group, which diffracted to 2.2 A resolution.

e The MSL-1R experiments with 5S rRNA by V. Erdmann (Freie Universitat
Berlin) produced the best crystals ever grown of this ribosomal RNA. The
space-grown crystals diffracted to 7.5 A and yielded the first complete data set
for this macromolecule from which the space group could be determined. The
best ground grown crystals diffracted only to 9.0 A. 5S rRNA is an essential
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component of ribosomes. Structural data will aid in understanding the process
of protein biosynthesis.

o NAD synthetase is also a target molecule for anti-bacterial drugs. Crystals of a
complex of NAD synthetase with an inhibitor drug provided by Y. Devedjiev (UAB-
CMC) yielded diffraction data 0.3 A better than had ever been obtained before. The
data are being used to study how well the proposed drug block the active site for this
target molecule.

e Crystals of Proteinase K and Proteinase K with a substrate complex provided
by C. Betzel (DESY, Hamburg) showed a 0.3 A improvement over the best
crystals ever produced before. Proteinase K is one of the most aggressive
proteases known and can even degrade keratin. It is used in several industrial
applications such as soap powder. This investigation is aimed at
understanding the binding between the target molecule and the substrate.

The UAB-CMC also developed hardware for batch crystallization that was termed the
Protein Crystallization Facility (PCF) to produce large numbers of crystals to meet a
commercial requirement. Crystallization was driven by withdrawing heat from one end
of a cylinder. The PCF first flew on STS-37 where it was used to produce batch
quantities of insulin crystals. Most of these crystals remained suspended in the growth
medium, but some were stuck to the walls. It was found that the free-floating crystals
were much better ordered than those that grew on the walls, thus confirming one of the
hypotheses as to why crystals seem to grow better (at least some of the time) in
microgravity. Further, the increased X-ray resolution of these crystals provided the
clearest picture yet of the structure if this important molecule. Results from Spacelab
flights of the PCF are summarized below.

USMP-1 (STS-52)

e Alpha-Interferon crystals grown by M. Long (UAB-CMC) grew somewhat larger
than their ground controls but were still too small for X-ray diffraction analysis.

USML-2 (STS-73)

e The objective of this experiment conducted by G.D. Smith (Hauptman-Woodward
Medical Research Institute) and Eli Lilly was to produce large quantities of a new
form of recombinant human insulin. Unlike the earlier flights in which both bovine
and human insulin produced well-formed free-floating crystals, all of these crystals
grew on the container walls. It is not clear whether the slightly different molecular of
this form of insulin caused the crystals to nucleate on the walls, or if the optimal
crystallization conditions were different for this system.
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Eventually, some of the UAB-CMC collaborators developed new hardware more suited
to their purposes, and formed additional collaborative teams of Investigators interested in
using their new hardware. For example, Carter, while he was at the NASA Marshall
Space Flight Center, was selected as a flight Principle Investigator by NASA. He
developed the protein crystallization apparatus for microgravity (PCAM) module that
was first flown on USMP-2 and the diffusion-controlled crystallization apparatus
(DCAM) which was flown together with the PCAM on USML-2.

The PCAM is a simplified vapor diffusion apparatus that utilizes a sitting rather than a
hanging drop. A stack of 9 units can be activated and deactivated by turning a single
knob. A single locker temperature enclosure system (STES) that fits in a middeck locker
can accommodate 378 units, 6 times the capacity of the older VDA. Furthermore, an
inexpensive disposable user interface is provided that permits rapid in situ evaluation of
results and allows users to carry the grown crystals back to their laboratories without
having to remove the crystals from the apparatus. The PCAM can also be cryogenically
stored.

The DCAM is a liquid diffusion dialysis method for growing crystals designed primarily
as a totally passive device to be used on MIR. Since there is limited crew time available,
the DCAM was designed to be totally passive, i.e. require no crew interaction. The
protein solution and precipitating agent are stored in adjacent chambers connected by a
small diameter tube filled with a gel. This gel-filled plug acts as a fuse that controls the
activation rate of the experiment. A total of 27 DCAM units can be fitted into a STEC.

Both the PCAM and DCAM have attracted a variety of Guest Investigators who want to
use his hardware. Carter later left NASA and founded New Century Pharmaceuticals,
Inc. but remains a NASA-sponsored Principle Investigator. In this role he continues to
offer Guest Investigator flight opportunities to both domestic and foreign collaborators
from other industries and universities whose requirements are suited to his hardware.

Many of the protein and life science experiments were degraded by the delays in the

launch
of STS-73. Nevertheless, there were some successes with the PCAM hardware as

summarized below.
USML-2 (STS-73)

e Guest Investigators C.H. Chang and P.J. Ala (Dupont Merck Pharmaceutical C.)
obtained the largest crystal and highest quality data yet obtained for a particular HIV
protease/inhibitor complex. The increased resolution allowed a refinement of the data
so that a better understanding of the binding of the inhibitor molecule can be
obtained.

e Guest Investigators J.P. Wery and D. Clawson (Eli Lily) obtained the largest crystal

ever grown of onogene product, Raf Kinase, a drug target for cancer therapy.
Unfortunately, the crystals were still too small for structural determination.
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Human Antithrombin III is important on the control of blood coagulation by forming
complexes with thrombin and other coagulation proteases, a process that is
accelerated by heparin. On a previous Shuttle flight, guest Investigator M. Wardell
(Cambridge University, UK, now Washington U., St. Louis), had obtained crystals of
this molecule which allowed the refinement of the structure so that the region of the
heparin binding site to be seen for the first time. Unfortunately, the protein
deteriorated during the delay in launching STS-73.

Guest Investigators J. Rose and B.C. Wang (U.Georgia) obtained the largest crystal of
neurophysin/vasopressin complex grown to date. The crystal exhibited a high degree
of optical perfection. X-ray analysis is in progress.

Guest Investigators J-P Declercq (Universite Catholique de Louvain, Belgium)
obtained the largest crystals of L-alanine dehydrogenase ever grown. Unfortunately,
the resolution is still not sufficient to obtain structural information.

G.K. Bunick (ORNL) used Carter’s DCAM to crystallize nuclesome core particles which
have a total molecular weight of 102 kD. Because of the launch delay of STS-73, most
of the nuclesome core particles crystallized on the ground. However, a few of the
DCAM units were set for longer times and the produced large crystals with a new
morphology that diffracted to a higher resolution than any crystals grown previously.

MSL-1 (STS-83)

Despite the early termination of MSL-1, several protein systems grew crystals large
enough for X-ray analysis. However, The primary value of this flight was the
optimization of the growth conditions for the next flight. Guest Investigator C.
Chang (Dupont Pharmaceuticals) grew diffraction size crystals of HIV Protease
complex with a proprietary inhibitor, but the crystals were twinned. There was not
sufficient protein to support the STS-94 flight, but the system was reflown on STS-85
under more optimal conditions. The crystals from this mission were the largest ever
grown and provided data to 1.8 A. With this resolution, a detailed image of the
inhibitor bound to the active site was obtained.

MLS-1R (STS-94)

Guest Investigators J-P Declercq (Universite Catholique de Louvain, Belgium) grew
the largest and highest quality crystal of Pike Paravalbumin ever grown. This protein
is of interest to fundamental biochemistry. Previous diffraction limit for Pike
Paravalbumin is 1.7 A and for all paravalbumin structures in the Brookhaven Data
Bank the highest resolution is 1.5 A. Declercq’s crystal diffracted to the limit of
measure of the Hamburg synchrotron, which is 0.9 A. Based on the number of
reflections at this angle, it is estimated that the actual resolution is closer to 0.6 A. He
crystals were also subject to neutron diffraction studies at Grenoble.
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e Crystals of lysozyme and ferritin were grown under special condition to support
fundamental research by B. Thomas and P. Vekilov (University of Alabama in
Huntsville, Center for Microgravity and Materials Science) into why crystals some
grow better in microgravity. Hopefully, this line of research will lead to
improvements in terrestrial growth processes.

McPherson (University of California) was also selected as a flight Principle Investigator
by NASA and he developed a simple crystallization module designed to take advantage
of the long duration microgravity environment on the Mir station to grow crystals by
liquid-liquid diffusion. The protein and precipitant solutions are flash frozen separately
and the frozen solids are placed next to each other in a small container. These individual
experiments are formed into 3 bundles that are stacked in a sealed aluminum cylinder.
The cylinder is then placed inside an aluminum vacuum jacket, or dewar, lined with a
calcium silicate absorbent. The absorbent was filled with liquid nitrogen to delay crystal
growth until thawing occurs aboard Mir. After the Shuttle docks with Mir, the crew
secures the dewar in a quiet area of the Mir station to minimize vibration. The liquid
nitrogen continued to boil off into Mir's oxygen/nitrogen atmosphere. In orbit, the
samples thaw after the nitrogen evaporated allowing the liquids to slowly interdiffuse.
The gradual increase in concentration of the precipitant within the protein solution causes
the proteins to crystallize. This occurs very slowly, allowing formation of large crystals
with highly uniform internal order. Growth by liquid-liquid diffusion is not practical on
Earth because the differences in solution densities will cause rapid mixing by gravity-
driven convection. Furthermore, the greater density of the crystals will cause them to
settle to the bottom of the container.

The GN2 dewar was flown on 6 MIR docking missions; however only one of these, SL-
M (STS-71) was considered a Spacelab mission. On this mission, 167 individual
experiments involving 18 different growth systems were carried in a single dewar.

A number of proteins have been successfully crystallized by this method resulting in
larger crystals with considerable improvement in resolution. Examples include Leg
Hemoglobin, Catalase, Canavalin, STMV, Cellulase, Concanavalin B, and Thaumatin.

McPherson also developed a hand-held diffusion test cell (HHDTC) which was flown on
USML-2, MSL-1 and MSL-1R. The unit consists of a gang of 8 cells that use the liquid-
liquid diffusion method for crystallization. The cells are backlighted for observation of
the growth process. The cell design is a forerunner of a more sophisticated system to be
used on the ISS with more diagnostic measurements.

The European Program

Littke carried out his landmark experiment using a liquid-liquid diffusion apparatus in the
Cryostat facility on Spacelab-1. Unfortunately, his attempt to obtain diffraction quality
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B-galactosidase crystals on D-1 failed because of equipment problems. A third attempt
on IML-1 yielded crystals that were too small for X-ray analysis.

The Cryostat on IML-1 provided McPherson the opportunity to compare crystals of
canavalin and STMV grown by liquid-liquid diffusion with identical systems grown in
the VDA on the same mission. Differences were noted in the kinetics of crystallization
by the two methods. A crystal of SMTV was grown in the cryostat that was an order of
magnitude larger in volume than had ever been grown on Earth. The diffraction
resolution was improved from 6 A to 4A. This represents the best resolution ever
obtained from a virus crystal. The best canavalin crystals were grown in the VDA. They
were of superior optical quality and exhibited increased diffraction efficiency, but
showed no significant increase in resolution. (See previous section, US Program Results)

The development of the Advanced Protein Crystallization Facility (APCF) on IML-2
made it possible to accommodate a larger number of samples (up to 48) and allows its
users to choose their method of crystallization between (1) Liquid/liquid diffusion or
free interface diffusion (FID), in which the protein and a salt solution are separated by a
buffer and are allowed to flow together when activated (the method used in the
Cryostat); (2) Dialysis (DIA), in which protein and salt solutions are separated by a
membrane through which the salt will diffuse slowly into the protein; and (3) Vapor
diffusion or hanging drop (HD), where crystals will form inside a drop of protein solution
as solvent evaporates from the drop to a reservoir (similar to the VDA). It also provided
a capability for real-time video recording of the growth process and was enhanced for the
LMS mission by the addition of a Mach-Zehnder-Interferometer which could measure
changes in the concentration field as the crystals grew, thus providing better insight into
the crystal-growth process in microgravity.

The IML-2, USML-2, and LMS missions offered multiple flight opportunities to a
number of investigator: a necessary commodity for success in this area of research since
it is often necessary to adjust or refine an experiment since growth conditions optimized
for normal gravity may not be optimum in microgravity. As with many of the US
investigators, the stay time on orbit was not long enough in a number of cases to grow
large enough crystals for diffraction studies. Also, the some of proteins loaded into the
experiments on USML-2 degraded during the 23 day delay in the launch that was due to
weather and technical problems. However, there were some noteworthy successes.

G. Wagner (U. Giessen) crystallized bacteriorhodopsin on IML-1, IML-2, and USML-2.
Bacteriorhodopsin converts light energy to voltages in the membrane of photoenergetic
microorganisms that are chemically and genetically distinct from bacteria and higher
living organisms. Resolution of the three-dimensional structure of this protein will help
scientists understand the mechanisms used to convert light energy to energy for growth.
Crystals from their IML-1 experiment improved the resolution from 8 A (form previous
ground-based work) to 6 Angstroms. Using the APCF on IML-2, two different growth
techniques were explored and larger cubic crystals were obtained. In a new experiment
protocol, first used under microgravity conditions during the USML-2 mission, both the
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compact alignment of the crystalline filaments of bacteriorhodpson and the crystal size
were greatly improved which resulted in an increase in diffraction power to 3.8 A.

Ribosomes are responsible for the translation of the genetic code to proteins. While they
are the only organelles in living cells to have been crystallized, most of the Earth-grown
crystals are very thin and crack upon handling, causing severe difficulties in data
collection

Yonath and H. Hansen (Max-Planck Laboratory for Ribosomal Structure, Hamburg)
grew crystals of a ribosome particle on D-2, IML-2, and on USML-2. In all cases, the
space-grown crystals tended to be somewhat rounded and bulkier than their Earth-grown
counterparts, which seems to make them less fragile and easier to handle. However, none
of the crystals were large enough for X-ray diffraction analysis.

On D-2, IML-2 ,USML-1, and LMS, V. Erdmann, and S. Lorenz (Freie Universitat of Berlin)
crystallized the nucleic acid 5S rRNA from Thermus flavus, an essential component of the ribosome
that is needed for biosynthesis. The crystals on IML-2 were fewer in number, but larger than the
ground-controls but diffracted only to the same resolution (15 - 20 A). It was noted, however, than
7 weeks had lapsed before the space crystals could be analyzed, which may have caused some
degradation. Similar results were obtained on USML-2, although, in this case, the material is
known to have deteriorated during the launch delay. Engineered 5S rRNA (modified to reduce
internal motions) grew larger in space than their ground controls, but did not diffract to as high a
resolution as the best ground grown crystals. (Erdmann later was able to get crystals that diffracted
to 7.4 A using the VDA-2 On MSL-1R. See Section on US program.)

N. Chayen (Imperial College, London) and co-workers crystallized the protein
Apocrustacyanin C on IML-2, USML.-2, and on LMS. Apocrustacyanin C is a member
of the lipocalin family of proteins, which binds to certain pigments that are widely
distributed in plants and animals. Knowledge of the structure of the lipocalins will enable
scientists to engineer these proteins to produce carriers that will bind more strongly to the
pigment crocetin, which has anticancer properties. On IML-2, She found no significant
increase in resolution in her flight samples, but did report seeing “halos” around the
growing crystals which would correspond to the region of depleted blue-colored protein
near the growth interface, indicative of growth under diffusion-limited transport
conditions. She also reported motion of the crystals, which she attributed to Marangoni
convection driven by concentration gradients along the surface of the hanging droplet
and suggested that crystals growing from a surface, as in a dialysis chamber, might have
better order (contrary to the findings of M. Long (UAB-CMC in the PCF). Mosaicity
(rocking curve) measurements on the crystals grown onUSML-2 showed a spread in data
with no significant difference between space and ground based growth. The space grown
crystals on LMS diffracted to much higher resolution than the ground controls, but were
12 times larger (by volume). Mosaicity measurements and X-ray topographic
measurements have not yet been reported.

W. de Grip, (University of Nijmegen) was interested in the structure of visual pigments

such as rhodopsin, which are the primary photoreceptor proteins for a variety of light-
regulated processes. Knowledge of the structure of this protein may help understand the
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signal transduction on the molecular level. Crystals grown on IML-2 were somewhat
larger than the ground controls, but were not large enough for X-ray diffraction studies.
Unfortunately, no useful crystals were obtained from theUSML-2 flight because of
problems with the reactor.

Broutin, M. Ries-Kautt, and A. Ducruix (CNRS, France) crystallized collagenase and
Photoreaction Center (PRC) proteins on UML-2. The PRC crystals diffracted poorly
because the degraded while being stored at 20°C prior to launch. However, the space
—grown collagenase showed a dramatic increase in diffraction efficiency, although there
was no significant increase in resolution.

Broutin, M. Ries-Kautt, and A. Ducruix (CNRS, France) extended their study of the effects of
microgravity on the growth of hen egg white lysozyme (HEWL) on USML-2. Using the APCF on
Spacehab-1, they grew the tetragonal form that diffracted to 1.3 A. This was better than any
previous published data, but there was no significant difference between the ground and space-
grown crystals. On USML-2, they grew the monoclinic and triclinic form of HEWL. The ground
and space-grown crystals of both forms diffracted to 1.45 A, better than any previously publish,
although there is unpublished reports of 0.99A resolution for the triclinic form grown on the
ground. The original plan was to also crystallize the protein Grb2, an adapter protein involved in
the transfer of signals from one cell to another. However, this protein was found to be unstable
before the final loading for the USML-2 flight.

The bacteriophage Lambda lysozyme is a small protein of 158 amino acids involved in the
dissolution of the cell walls of bacteria. J-P Declercq and C. Evard (Université Catholique de
Louvain, Belgium) grew crystals of this protein on USML-2 hoping to learn more about the method
of destruction employed by this organism from the structure of its lysozyme. However, they
obtained only small needle-like crystals and concluded that optimum crystallization conditions must
be different in microgravity than on Earth.

J. Helliwell (U. Manchester) grew crystals of hen egg white lysozyme (HEWL) on IML-
2. This type of lysozyme is easy to grow and it was one of the first proteins whose
structure was determined. Therefore, it has been widely used as a model protein for
studying the growth of proteins. In this experiment, rocking curves (a measure of crystal
long range order) from space-grown crystals were found to be reduced from 0.0067
degrees for earth grown controls to 0.0017 degrees. It was noted that the decrease in
rocking width is proportional to the increase in peak height of reflections with, after
corrections for volume in the beam, the microgravity crystals displaying peak intensity
levels three to four times that of the earth grown counteg:arts. It was readily possible to
find reflections for the microgravity- grown case at 1.2 A resolution.

The experiment was repeated on LMS in a chamber with a Mach-Zehnder interferometer
and video imaging capability. Stability problems with the laser caused some difficulty in
interpreting the interferograms, but depletion regions around the crystals were evident.
Growth rate and crystal motion were monitored using the CCD video camera. All
crystals seemed to follow a general drift at the rate of ~40 A/sec., although occasionally
there were spurts where they moved ~0.2 mm over a 2 hour period which corresponds to

102



a rate of 300 A/sec. Unlike Chayen’s experiment, which used the hanging drop method,
these experiments used the dialysis method, hence there was no free liquid surface that
could support Marangoni convection. (The observed drift was most likely due to the
quasi-steady residual accelerations (atmospheric drag plus gravity gradient) and the
sudden spurts could be the results of changes in attitude of the Shuttle.) Periods of
increased growth rate were also noted that could be correlated with crew exercise periods.

J. Martial (Universite de Li¢ge) and L. Wyns (Universite de Bruxelles) synthesized a series of de
nova proteins, named Octarellins, that are designed on the basis of an alpha/beta barrell structure in
order to understand the molecular forces that stabilize their structures. Attempts to crystallize
several of these systems on IML-2 and on USML-2 produced only needle-like crystals, too small
for X-ray analysis. However, some crystals produced in the ground control units were able to
provide low resolution diffraction data.

L. Sjolin (U. Gteborg, Sweden) crystallized Ribonuclease S using the vapor diffusion
method in the APCF on IML-2. The crystals grown in space were similar in size and
number to those grown terrestrially; however, the space-grown crystals tended to have
flatter faces which is generally a sign of greater perfection. Also, some of the control
samples had cracks that were not found in any of the flight crystals. Ten data sets were
then collected from both earth-grown and space-grown crystals. The results from the
statistical analyses of the ribonuclease S crystal data indicate that, when crystal growth
conditions are optimized, the space-grown crystals of ribonuclease S show a smaller
mosaic spread than crystals under comparable conditions on earth. Analysis of the three-
dimensional X-ray data from all ten crystals of ribonuclease from both space and earth
clearly shows that the variance between the different data sets is less for the space grown
crystals. A similar experiment was attempted on USML-2 using Glutathione S
Transferase. Unfortunately, technical problems prevented the return of useful crystals.

J. Ng (now U. Alabama in Huntsville), B. Lorber, A. Théobald-Dietrich, D. Kern, and R.
Giegé (CNRS, Strasbourg) grew Thermophilic Aspartyl-tRNA Synthetase on IML-2,
USML-2, and LMS. Aminoacyl-tRNA synthetases are the enzymes that attach
specifically the amino acids to transfer RNA, and thus are responsible for the correct
expression of the genetic code. On IML-2 it was found that the crystallization conditions
used on the ground were not proper for microgravity. Only small crystals were observed
which appeared to be growing by Ostwald ripening. These results were used to set the
crystallization conditions for the USML-2 experiment. Unfortunately the protein
denatured during the launch delay and no usable crystals were produced on this flight.
On the LMS flight, only one dialysis reactor contained crystals. However, this reactor
contained three unusually large, high quality crystals, the largest being over 3 mm in
length and free of any visual imperfections. These crystals produced almost twice the
number of Bragg reflections than the Earth-grown crystals (93% increase in diffraction
efficiency) but did not extend the resolution significantly. The mosaicity spread (rocking
curve width) was reduced by a factor of 8 in the space-grown crystals, implying a
dramatic increase in internal order.

103



Giege and his co-workers added thaumatin, a plant sweetening protein, to their
experiment on USML-2 and found fewer, but substantially larger crystals in the space
reactors. The space crystals, especially those that grew suspended in the fluid, were
perfectly formed and free of any visual imperfections. They reported an improvement
in resolution from 1.7A to 1.5A with improved diffraction properties as judged by
relative Wilson plots. The rocking curve width was reduced from 0.055° to 0.023° for
the crystals grown in space. Similar results were obtained from the LMS flight. In this
case the rocking curve width (FWHM) was reduced from 0.047° to 0.018°.

McPherson used the liquid-liquid diffusion capability of the APCF on IML-2 to
crystallize canavalin, STMV, Satellite Panicum Mosaic Virus (SPMV), and Turnip
Yellow Mosaic Virus (TYMV). Both rhombohedral and hexagonal forms of canavalin
grew in the same flight chambers; a highly unusual situation on the ground which was not
seen in the control experiments. The crystals were quite large ( >1 mm) and exhibited
high optical quality, free of any imperfections. Previous flight had produced canavalin
crystals of similar optical quality, but showed little or no increase in X-ray diffraction
resolution. Relative Wilson plots of these crystals showed marked improvement over the
best canavalin crystals ever grown on Earth. These crystals also diffracted to higher
resolution and provided data to refine the structure of canavalin. Very large (>1.5 mm)
cubic crystals of STMV grew in the flight reactor ; as much as 30 times the volume of the
largest cubic STMV ever grown on Earth. Again these crystals diffracted to 2 A better
than the best cubic STMV grown on Earth. The TYMYV crystals exhibited a different
morphology attributed to diffusion controlled vs. convective transport. They did not
show any improvement in X-ray diffraction resolution, however. No useful crystals of
SPMV were returned. This system uses PEG as the precipitating agent, and as was
discovered by DeLucas, its slow diffusion time for this liquid does not provide adcquate
mixing in microgravity in the time frame of these experiments.

McPherson added thaumatin, catalase, concanavalin B, and Tomato Aspermy Virus to the
materials to be crystallized on USML-2. The thaumatin in this experiment was grown by
liquid-liquid diffusion to compare with the result of the Strasbourg team who used the
dialysis growth method (See Giege above). Only thaumatin grew high-quality crystals
with sizes as large or larger than those grown on Earth. It was suspected that the other
materials deteriorated during the launch delay of USML-2.

The thaumatin experiment was repeated on LMS. In both flights, the quality of the
thaumatin crystals was excellent in all cases, except those where the crystals grew with
faces against walls. These showed extensive striations. The thaumatin crystals increased
in size with increasing protein concentrations. This interesting observation points out
another advantage of growth in microgravity. On Earth, convection would continuously
expose the growth interface to the high concentration, causing very rapid growth leading
to many growth imperfections. In microgravity, the diffusion field limits the transport
and keep the growth rate slow even at high protein concentrations. The flight crystals
diffracted strongly to the maximum resolution that the data collection system could
achieve, approximately 1.5 A, an improvement of 0.2 A from the best Earth-grown
crystals. An improvement of 30% in diffraction efficiency was also noted. The mosaicity
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of the flight crystals was measured at 0.020° FWHM vs. 0.048° for the best terrestrially
grown thaumatin crystal. (Note: ground control experiments cannot use liquid-liquid
diffusion because of the very rapid convective mixing of the two fluids.)

W. Weber (U. Eppendorf) and Ch. Betzel (European Molecular Biology Lab, Hamburg)
continued their work on the various forms of receptors of Epidermal Growth Hormone
that they began using the VDA on SL-J. However, now they used the European APCF
that was flown on the USML-2, and LSM missions. Diffraction data from three crystals
grown on USML-2 again showed a maximum resolution of 6 A with a remarkably high
quality of Bragg reflections, confirming the SL-J results. The best Earth-grown crystals
of this particular receptor had yielded comparable results but required larger sizes and
much more time to grow. The crystals grown on LMS did not produce usable diffraction
data.

P. Fromme (Max Volmer Institute) and W. Saenger (Freie Universitat Berlin) crystallized
the protein complex, Photosystem 1, which is responsible for the primary conversion of
visible light into chemical energy in water-oxidizing photosynthesis. The objective of this
experiment was to determine the complete arrangement of chlorophyll molecules that
perform this conversion process. On Earth, the largest of the hexagonal rod-like crystals
grew on the dialysis membrane and was 2 mm long and 0.5 mm @ (volume of 0.4 mm’).
The USML-2 flight produced crystal that were 4 mm Jong and 1.5 mm @ (volume of 7
mm?®) even though, for technical reasons, the flight crystals could not grown be at their
optimum growth temperature. In spite of this, the crystals still diffracted to 3.8 A, and the
mosaic spread reduced slightly to approximately 0.7°. The experiment was repeated on
LMS and, for reasons unknown, the flight reactors failed to nucleate crystals even though

all the ground control reactors produced diffraction quality crystals.

L. Wyns, M.H.D. Thi, and D. Maes (Universite de Bruxelles) investigated the growth of
CcdB crystals, a protein involved in the control of cell death which may lead to the
design of new antibiotics and anti- tumoral drugs. The quality of terrestrially grown
crystals of this protein was not sufficient to obtain high resolution diffraction data and
twinning was a serious problem. In addition, they wanted to crystallize two specific
serine-to-cysteine mutants (Ser74Cys and Ser94Cys), proteins which have not produced
crystals large enough for data collection. Small needle shaped crystals of CcdB were
obtained in the hanging drop reactors on both USML-2 and on LMS, but they diffracted
no better than Earth —grown counterparts and twinning is still a problem. No useful
crystals of the mutants were obtained on either mission.

Zagari (U. Napoli) and coworkers crystallized Sulfolobus Solfataricus Alcohol Dehydrogenase on
the USML-2 and LMS missions. Alcohol dehydrogenase (ADH) is an enzyme that occurs in large
amounts in the livers of mammals, where it plays an important role in several physiological
functions, including the breakdown of alcohol. Mammalian ADH is unstable at high temperatures
or in the presence of organic solvents, properties that limit its biotechnological application to the
synthesis of organic compounds. ADH from Sulfolobus solfataricus, a bacterium that thrives at high
temperatures, has greater thermal stability, however, and is scarcely affected by the presence of
organic solvents. Given these properties, the enzyme is a good candidate for industrial applications.
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Crystals of useful size can be grown on Earth, but are badly twinned, thus preventing the collection
of diffraction data. Some success had been obtained with growth in gels, which also reduce
convective effects, which prompted the experiments in microgravity.

Since the protein is known to be very stable, it was not reloaded during the 23 day delay in
launching USML-2. However, both flight and ground control experiments which were activated at
the same time as the flight experiments produced only small crystals that diffracted poorly,
suggesting that degradation of the protein did occur. The experiment was repeated on LMS with
much better results. The space-grown crystals diffracted to significantly higher resolution and
exhibited increased stability in the X-ray beam. Unfortunately, analysis of the X-ray data revealed
that the space-grown crystals were still twinned.

T. Richmond and A. Mader, (Institut fur Molekularbiologie und Biophysik, Zurich)
crystallized nucleosome core particles. The nucleosome shapes the DNA molecule by
twisting and bending it and form higher order structures on the scale of genes. The
laboratory crystals have an anisotropic mosaicity spread, which they hope to reduce by
growing crystals of these particles in microgravity. Unfortunately, the growth conditions
they had to use in the APCF were not optimum for this material. Consequently, the
space-grown crystals showed no significant improvement over the ground control growth
experiments, and neither produce as good results as their optimized laboratory growth
methods.

J. Garcia-Ruiz, F. Otalara, D. Rondon, and M. Novella (U. Granada, Spain) used the
APCF on LMS to test the Mach Zehnder interferometer, measure growth rate and crystal
motion, investigate the use of high protein concentration in liquid-liquid diffusion
growth, and to explore the concept of growing protein crystals in X-ray capillary tube.
The protein chosen was HEW lysozyme, which is one of the standard proteins, used for
investigating the growth of protein crystals. They were able to record inteferograms, but
also ran into difficulty in interpreting them because of instabilities in the laser. Their
observations of particle motion were similar to those described by Helliwell (see above).
Growth rates were observed to increase initially, and then decline with time as would be
expected from growth under diffusion-limited transport condition as the diffusion field
spreads out.

Since crystals ultimately have to be mounted in X-ray capillary tubes for analysis, this
operation raises the possibility of damage to the fragile crystal. The confined growth
environment may offer another advantage. One of the arguments for why protein crystals
grow better in microgravity is that diffusion limited growth slows the rate at which
nutrient is transported to the growing crystal so that growth becomes transport limited
rather than kinetics limited. This gives surface kinetics a chance to go to equilibrium,
assuring that each admolecule has a chance to find its lowest energy configuration, which
would produce greater order in the lattice. An analogy would be the filling of an arena
for a rock concert or a soccer match. If the doors were opened wide, the crowd rushes in,
there is great confusion in finding the proper seats, and many fans do not wind up in their
assigned seats. Here, the filling of the seats is limited by the rate at which people can
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find any old seat, which would correspond to crystal growth under kinetics limited
conditions. On the other hand, if only a few people were allowed in at any one time, the
filling of the arena would be transport limited and the people would have a much better
chance of being in the right seat, which would correspond to admolecules finding their
right position and orientation in the lattice.

When a crystal grows on Earth, the nutrient next to the growth interface is depleted and
the lighter solvent rises, bringing more solute to the growth site. Since growth kinetics
are slow for most proteins, the convective flows always bring nutrient to the crystal faster
than it can be incorporated into the lattice. Thus the growth in normal gravity is
generally kinetics limited. In space, solute must diffuse in from the surrounding region,
which slows the transport to the growing crystal. However, the laws of diffusion are such
that this depleted region (so called diffusion length) is approximately the radius of the
growing crystal and the diffusion limited transport may not be slow enough to be the
limiting factor in the growth rate of the crystal. In fact, Vekilov et al. recently showed
that growth instabilities may arise when transport and kinetics are in competition, and
that this situation could explain why some proteins produce inferior crystals when they
are grown in space. See. Vekilov, et al., Physical Review 54/6 (1966) 6650-6660).
Growing crystals in X-ray capillary tubes in space may have the added benefit of
extending the diffusion length and assuring that growth actually becomes transport
limited.

Garcia-Ruiz et al. grew HEW lysozyme, which has come to be a standard protein for
studying growth phenomena. The space grown crystals typically diffracted to 1.25 A
(one crystal diffracted to 1.15 A), which is comparable to the best lysozyme crystals
grown on Earth with highly purified material. The longer diffusion length provided by
the X-ray capillary may have acted as an effective filter for the higher molecular weight
impurities usually found in lysozyme. The Garcia-Ruiz team found a spread of
mosaicities ( rocking curve width) ranging from 5 arc seconds (0.0014°) to 20 arc
seconds (0.005°), depending on the part of the crystal they examined. These roughly
correspond to the flight and ground-based values obtained by Helliwell. Since the first
growth incorporates the nearby impurities before the diffusion field has a chance to
develop and act as a filter or to limit the growth rate, this could explain why different part
of the crystal exhibited different mosaicities. Similar results have been seen in ground
based work by Garcia-Ruiz using the gel-acupuncture method for growth.

Other Biotechnology Experiments
Electrophoresis

Electrophoresis, and its related electrokinetic separation processes such as
isoelectrofocussing, are widely used for separation of proteins on an analytical scale. The
protein molecules take on a particular surface charge (zeta potential) in a buffer solution.
When an electric field is applied, the molecules will be move under the influence of the
applied field. Usually, the proteins are caused to migrate through a gel. The combination
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of the attraction by the applied field and the drag through the pores of the gel give each
protein a specific mobility so that they will become separated spatially as the process is
continued. Because this process is limited to microgram quantities, it is used primarily as
an analytical tool.

Attempts to scale electrophoresis to a preparative scale by replacing the gel with a
continuous flowing sheet of sample plus buffer solution has enjoyed only limited success
on the ground, primarily because buoyancy driven convection places severe restrictions
on the sample concentration and the thickness of the flowing buffer sheet. These factors
limit the throughput of continuous flow electrophoresis (CFE); consequently, it has
largely lost favor to other methods, such as column chromatography, as a preparative
separation method. There are certain potential advantages to CHE, however. Itis a
universal method, as opposed to column chromatography, where the columns have to be
designed to separate specific proteins. Also, it can be applied to cell separation without
having to tag the cells as is required by various cell sorting techniques.

The potential advantages of CFE prompted the McDonnell Douglas Corporation to
develop a space continuous flow electrophoresis device (CFES) with the hopes of
carrying out preparative electrophoresis on a commercial scale by widening the flow
chamber and using a highly concentrated sample stream. The CFES flew seven times on
the early Shuttle flights and worked reasonably well, but the separation was never as
clean as was hoped for. Eventually, their commercial partner found a ground-based
alternative to separate their product, and the project was dropped.

The unexplained broadening of the concentrated sample stream prompted Snyder and
Rhodes at NASA/MSFC together with Saville at Princeton University to carefully
examine the electrohydrodynamics involved in the distortion of a concentrated sample
stream because of the mismatch in conductivity and dielectric constant between the
sample and the surrounding buffer. Such effects had gone unnoticed in the development
of CFE machines for terrestrial use because they were usually masked by convective
effects. None-the-less, these electrohydrodynamic effects had to be operating, even
though on a scale of lesser importance, but they could ultimately become a significant
factor as other limitations were overcome by clever designs.

Interest to re-evaluate the potential of CFE in space on the part of the Japanese and the
French led to the inclusion of two CFE systems on IML-2. The Japanese Free Flow
Electrophoresis Unit (FFEU) was designed primarily as a separation device and was first
flown on the Spacelab-J mission during which Kuroda and his team from Osaka
University Medical School attempted to separate a group of standard proteins (horse
cytochrom C, chicken conalbumin, and bovine serum albumin) in order to test the
resolution as a function of concentration, flow rate, and operating voltage. Their results
were inconclusive due to technical difficulties. On the same mission, Akiba (Institute of
Physical and Chemical Research) attempted to separate three strains of Salmonella
typhimurium LT2 cells, each of which has a different surface charges, which corresponds
to its sensitivity to antibiotics. A clean separation was obtained for one of the cell types,
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but the peak of the third cell line unexpectedly overlapped with the second, thus
preventing their separation.

On IML-2, Kobayashi (JOSAI University) successfully separated two types of nematode
DNA from a DNA mixture using the FFEU with a special buffer to operate in the
isoelectric focussing mode. The sample detector indicated sharp, well defined sample
streams. However, a bubble in the separation chamber caused some irregularity in the
collection.

Okusawa (Hitachi Ltd.) also used the FFEU on IML-2 to extract IgG form a culture
medium of STK1 cells. He reports that the cells cultured in space produced twice as
much IgG as their ground control. The sample detector indicated the separation was
much more stable in space than on the ground, however bubbles in the chamber caused
difficulty in the sample collection.

Hymer (Penn State University) used the Japanese Free Flow Electrophoresis Unit (FFEU)
on IML-2 to separate rat anterior pituitary organelles with aim of separating out those
vesicles that contained growth hormone (GH). The vesicles were obtained from the lysate
of pituitary cells cultured in space. Due the absence of sedimentation , he was able to use
a higher concentration of the lysate in space, hence was able to increase the throughput
by a factor of 5.6. He did notice a wider band spread of the GH-producing particles that
were separated in space. The plan to separate the GH-producing cells from other cells
using the FFEU could not be carried out due to equipment problems, but was performed
on the ground at KSC 8 hours after landing. Pituitary cells that were fed in space, for
unknown reasons, produced 5 times as much GH as the ground control. Further, it was
found that their electrophoretic mobility had increased by a factor of 2 as compared to
cells that had been cultured on Earth.

The other electrophoretic device flown on USML-2 was the French “Recherche
Applique sur ]a Methodes de Separation Electrophorese Spatiale” or RAMSES. This
instrument was designed as a research tool as well as a separation device. It could be
operated with AC fields to examine the electrohydrodynamic sample stream distortion
without the complicating cross flows involved in the actual separation process.

Sanchez and Clifton (Universite Paul Sabatier, Toulouse), characterized the separation ability of the
RAMSES system by separating various standard proteins, hemoglobin, and dyed BSA. A much
broader range of operating conditions are available in microgravity and the flows were stable under
all conditions studied, confirming that gravitational effects limit the operating range on Earth.
Dilute samples differing in mobility by only 3x10° m¥Volt/sec could be separated. However, the
more concentrated samples spread so that their peaks overlapped. This electrohydrodynamic
phenomenon is due to the difference between the conductivity and dielectric constant of the sample
and the buffer. The Investigators were, however, able to increase the throughput of a biologically
active sample by a factor of 5 by concentration and still get as good a separation as on Earth. All of
these results were supported by extensive computer modeling.
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Snyder and Rhodes had also planned to investigate the effect of high sample
concentration and electrohydrodynamic instabilities in the absence of shear flow.
Unfortunately, their experiment could not be run due to an electrical failure in the
RAMSES equipment.

Electrofusion

Electrofusion has emerged as an important new hybridization technique on the cellular
level for the formation of hybridomas for making monoclonal antibodies as well as for
somatic hybridization in sexually incompatible plants. In the later application,
hybridization and exchange or recombination of organelles can be achieved by fusion of
protoplasts by the reversible electric breakdown of their plasma membranes. With this
method, protoplasts are first brought into close membrane contact by a weak alternating
electrical field and then subjected to a high voltage pulse of short duration to induce local
membrane reorganization at the contact area. However, for this process to be successful,
it is necessary for the two electrically-aligned cells to remain in the same relative
positions for a certain time after the application of the high voltage pulse. Gravity tends
to interfere with this process, especially when the protoplasts have different densities.
This consideration prompted a number of microgravity experiments using the TEXUS
suborbital rocket program, which led to the electrofusion experiments on the D-2
Spacelab mission.

During theD-2 mission, Hampp and his team at Univertat Tubingen performed
electrofusion experiments on three different systems; 1. tobacco as a model system, 2.
Helianthus (sunflower) as an important crop, and 3. Digitalis as a plant of
pharmacological interest. The resulting fusion products were cultivated (along with
parental cells) for 10 days under microgravity, and subsequently regenerated on the
ground for biochemical analysis.

The alignment times were shortened for all three systems, however, for some reason, the
tobacco did not respond to the first pulse and increased voltage had to be applied.
Consequently, the heterofusion yield for the tobacco was only 0.3-1.5% in both flight and
ground control experiments. However, the yield for Helianthu was increased by 4-fold in
microgravity and the yield for Digitalis was increased by a factor of 10.

ASTROCULTURE

ASTROCULTURE™ is a state-of-the-art plant growth chamber for space as well as
terrestrial research that was developed by the Wisconsin Center for Space Automation
and Robotics (WCSAR), a NASA-sponsored Commercial Space Center (CSC) located in
the College of Engineering at the University of Wisconsin-Madison. This chamber uses
many of the technologies developed by WCSAR and its industrial partners which
includes the ASTROPORE® humidity control system, high intensity LED light sources,
a porous tube water-nutrient delivery system, a unit for removing ethylene which does
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not require consumable materials, and proprietary software to coordinate and monitor
operation of these subsystems. This chamber represents an integration of agriculture and
automation, two of WCSAR's core technical strengths. The traditional method of
studying plants has been in their natural environment. Over the past few decades that
approach has changed to one of research in a controlled environment such as the
ASTROCULTURE™ where scientists are able to control each variable.

The primary missions of the WCSAR are: 1. to support industry in the identification and
development of new products and new technologies for the commercial marketplace, 2.
to support NASA in the development of technologies that will contribute to the human
exploration and development of space, and 3. to support dissemination of WCSAR
program experience for educational purposes.

The ASTROCULTURE™ facility first flew on USML-1 and subsequently has flown on
a number of Shuttle flights including the USML-2 Spacelab mission. The earlier flights
were primarily tests of the various subsystems in microgravity, which culminated in an
actual demonstration of the growth of potato tubers on USML-2 that could be used as a
source of food on later extended duration missions. The potato tubers developed
normally, despite the lack of gravity, and the starches they produced were very much the
same as the starches produced by potatoes grown on Earth except for the reduced activity
of the enzyme, ADP-glucose pyrophosphorylase. This later finding is not understood and
requires further study.

Later flights investigated the growth of other plants as possible food sources for extended
manned missions including the growth of dwarf wheat plants from seed-to-seed on the
MIR station. It was also demonstrated during the STS-95 mission that the microgravity of
space provides a particularly suitable environment for transgenic plant alterations. A
scaled-up version of the ASTROCULTURE™ facility is being developed for the
International Space Station to provide food to the crew.

A number of the technologies that went into the development of the
ASTROCULTURE™ flight hardware have found their way into the commercial market.
For example, owners of large commercial nurseries nationwide are now using the
module's water and nutrient delivery tubes. The project also developed a system of air
humidification/dehumidification that does not need a gas or liquid separator as other
systems do. The LED arrays used for lighting in the facility produce an average
continuous output of 4 - 6 watts at a wavelength of 660 nm. This output is equivalent to
the terrestrially sensed output of the sun at this wavelength at high noon. These LED
chips are arrayed on an alumina tile substrate that may be formed to provide optical
power focused on a specified target area which can be used as energy efficient lighting
systems for large scale commercial nurseries. These arrays also offer a low cost
alternative to laser light sources in a wide range of medical applications such as
measuring blood sugar levels or use in photodynamic cancer therapy.

BioServe
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BioServe Space Technologies is a NASA Center for Space Commercialization located
jointly at the University of Colorado in Boulder, Colorado, and Kansas State University
in Manhattan, Kansas. The primary mission of BioServe is to facilitate commercial use of
the unique environment of space . BioServe focuses on research in biomedical,
pharmaceutical, bioprocessing, bioproducts, agricultural, and environmental areas. Areas
of investigation can be categorized to include studies on whole organisms , mammalian
cells, viruses, plants, microorganisms, biocrystal growth, biomaterials, bones/skeletal
materials, and other related topics. In general, reduced gravity has been shown to alter
one or more aspects associated with each of the above categories. Ongoing research is
directed towards identifying the underlying causes of the altered outcomes and exploring
the potential of related commercial applications.

A Generic Bioprocessing Apparatus (GPA) payload was flown for the first time on
USML-1 (STS-50). The GPA module replaces a middeck locker and provides
confinement and environmental control for up to 72 Fluid Processing Apparatuses
(FPAs). Each FPA can be thought of as an automated test tube in which up to three
different fluids can be mixed at different times in order to perform an individual
experiment. (For example, an activator can be added to a culture medium at the
beginning of the experiment and a fixative added at the termination.). On USML-1, the
FPAs were activated individually by the crew. On later flights, the FPAs were packaged
in groups of 8 so that the entire group could be activated manually or automatically.
Individual FPAs can be placed into an optical density measurement device inside the
GBA to collect turbidity data providing real-time experimental reaction rates. Variations
of the standard FPA configuration include a Gas-Exchange FPA (GE-FPA), a Plant-FPA
(P-FPA) and an Insect FPA (I-FPA). Inserts are also used to facilitate protein crystal
growth experiments. The different designs address specific experimental requirements
such as providing larger habitats (insects) or allowing gas exchange within the GAP
atmosphere to increase the available amount of oxygen / carbon dioxide. The T-GAP
(toroid) contains a single volume insert (no activation or termination) that replaces the 8
FPAs to provide a larger experimental volume for specific applications. Other
modifications can be considered on an "as needed" basis.

The Commercial GBA can either be flown as an isothermal containment module (GBA-
ICM) with a set temperature ranging from 4°C to 37°C, or as an incubator (GBA-INC).
A Fluid GBA was designed to dispense carbonated beverages on STS-77 and a Plant
GBA designed to support plant growth was flown on STS-77 and on MSL-1 and 1R. All
told, GBAs have been flown on 18 Shuttle flights, including two extended stays on MIR.
More than 100 plant experiments have been conducted, more than 2500 space
experiments have been performed in FPAs and another 120 experiments have been
performed in Bioprocessing Modules (a JSC-developed device whose function is similar
to the FPA).

These flights have been used to investigate a wide variety of microgravity effects, many

of which were totally unexpected and could not have been predicted from simple fluid
mechanical arguments. A few examples are:
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Accelerated growth of microorganisms. Many experiments have demonstrated
that bacteria, paramecia, and other microorganisms grow faster in microgravity.
One argument that has been suggested is that since the organism does not have to
swim against gravity, more resources can be devoted to growth. The BioServe
experiment, which demonstrated enhanced growth of a nonmetal strain of E. coil
(ATCC 4157), shows that other factors are responsible. Growth in suspension
cultures as well as on agar substrates were enhanced in microgravity.

Enhanced cellular production. The production of the antibiotic monorden by the
fungus Humicola fuscoatra was increased by 190% in microgravity, which is
consistent with reports of increased production of cell products from other cell
lines in a weightless environment.

Altered development of organisms. In one set of experiments, the development of
brine shrimp was significantly increased in microgravity. However, in another
set of experiments, the differentiation of bone marrow macrophages was retarded,
although their growth was enhanced.

Enhanced enzymatic activity. Enzymes such as plasmin, collagenase, and
cellulase were shown to degrade fibrin, collagen, and cellulose respectively 30-
50% faster in microgravity than in normal gravity. A smaller enhancement was
also observed in clinostat experiments.

Enhanced expression of auxin-regulated genes. Plant growth and development is
highly sensitive to auxin and altered sensitivity can have dramatic effects on such
things as root growth and the production of metabolites of pharmaceutical
interest.

Plant growth and development in absence of gravitational cue. The role of the
statocytes (specialized cells though to be the gravity sensors) in gravitropism is
reasonably understood, but not the mechanism by which the gravity force is
turned into a biochemical signal. BioServe is interested in how plants, in the
absence of gravitational cues, signal for ethylene production, cell wall thickness,
lignin production, and the partitioning of carbohydrate between lipid and starch
production. This knowledge might allow them to manipulate plants to optimize
plant products, both in space as well as on Earth.

Magnetic combing of collagen. Collagen can be grow in vitro on Earth, but itis
disordered at the fiber level making it undesirable for implants. BioServe
demonstrated that it could be “combed” in microgravity by drawing fixed
magnetic bacteria through it with a strong magnetic field as it is being
polymerized.

Growth of biocrystals. BioServe has demonstrated that different growth
techniques; e.g. osmotic dewatering, dialysis diffusion, microdialysis, etc. can
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also produce biocrystals that are of higher quality in microgravity as evaluated by
X-ray diffraction resolution, mosaicity, and stability in an X-ray beam.

Science Assessment
Biomolecular Crystal Growth

The growth of protein and other macromolecular biomaterials has been and still is more
of an art than a science. There are many variables that can affect the growth process,
many of which are not well understood, are not always under control. Furthermore,
nucleation in a stochastic event so that there is always a certain amount randomness
involved, even if all other variables are controlled. As a result, it is not unusual for
apparently identical experiments to yield quite different results. Traditionally, structural
molecular biologists have set up large arrays of growth experiments, not just to screen for
optimum growth conditions, but also to improve their chances of obtaining at least one
growth chamber with usable crystals. Since their primary job was to obtain molecular
structure, not to investigate growth processes, these workers seldom had the opportunity
or the background to investigate the fundamentals of the growth process.

There is no question that some growth systems have produced crystals of outstanding
quality in microgravity and, in a number cases, the space-grown crystals were superior to
the best crystals of those particular systems that had ever been grown on Earth. These
findings have attracted the attention of the some of theoreticians who study the formation
of crystal structure in small molecule systems. Exactly how does gravity affect the
growth process? Why do some protein systems seem to benefit from microgravity and
others do not? Can we apply this knowledge to improve the growth of protein crystals on
Earth? NASA is now vigorously supporting this avenue of research. Consequently, this
growth problem is being attacked by a multi-disciplinary approach, which includes
protein chemists, solid state physicists, surface scientists, fluid dynamists and
computational process modelers. International meetings sponsored by several crystal
growth societies are now being held on an annual basis and are attracting an increasing
number of participants.

There are a number of theories and conjectures that have been set forth as possible
explanations for this phenomenon, several of these have already been discussed in the
preceding sections. One of the more paradoxical findings has been the fact that the
space-grown crystals in many cases have been both larger and better organized.

Generally better internal order requires slower growth rates, which would be case if
diffusion controlled transport became the rate limiting step in the growth process.
Therefore, the growth rate in space should always be equal or less than the growth rate on
Earth where convection provides additional transport. How then can the space-grown
crystals grow larger in the same length of time as their ground control counterparts?

One possible answer is that the space crystals continue to grow while the growth of their
Earth counterparts slows and eventually ceases. This well-known, but poorly
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documented, phenomenon of growth cessation had been one of the factors that limited the
size of many protein systems and is has been demonstrated that the problem is
exacerbated by forced convection (see Pusey et al. J. Crystal Growth 90 (1988)105-111).
It was speculated that the convective flows bring contaminants to the vicinity of the
growing crystal where they may poison the growth interface. For this theory to hold, the
contaminants must be incorporated into the crystalline lattice in preference to the protein
monomers; otherwise, convective flows would have the beneficial effect of sweeping the
build-up of the partially rejected impurities away from the growth front. It is known that
protein growth solutions are frequently contaminated by higher order oligomers of the
native protein that form spontaneously. Whether these oligomers are preferentially
incorporated and, if so, how their presence might poison the growth interface is still not
clear. However, the results obtained by Garcia-Ruiz from growth in X-ray capillaries
lend credence to the hypothesis that the diffusion field actually do make an effective filter
for higher molecular weight contaminants and that their reduction does in fact improve
the growth and quality of the crystal. Subsequently, it has been found that by paying
more attention to the purity of the starting material, dramatic improvements can also be
made in terrestrially grown crystals. . Progress such as this may ultimately prove to be
the most valuable contribution the space experiments can make to the field of
macromolecular crystal growth and structure-based drug design.

Another issue that must be addressed is why so many space experiments have failed to
produce high quality crystals. One to two weeks is marginal for the growth of many
systems and a number of flights have returned crystals than were simply too small for X-
ray diffraction analysis. Longer duration flights, which will be possible on the ISS,
should help this situation immensely, as evidenced by the successes McPherson has had
with his GN2 dewar experiments on the Mir station. In addition, there seems to be some
evidence that growth conditions that have been optimized for growth in normal gravity
may not be optimum growth under purely diffusion-limited conditions and some
tinkering with the growth conditions in space may be required. The problem of
maintaining control over the many possible variables, such as the presence of trace
contaminants, plagues space experiments as it does terrestrial experiments, making it
difficult to get reproducible results. Finally, according to Vekilov’s theory, growth of
some systems in microgravity may actually move the growth mechanism from a region
of stability to an unstable one. Unfortunately, the physical properties of only a few
protein systems are known well enough to be able to apply this theory, and a rigorous test
of the theory has not yet been performed.

Even though the success rate of obtaining superior crystals by growing them in space is
only 20-25% for a given protein (i.e., one or more of all the space experiments with that
particular protein produced better crystals than had previously been produced on Earth),
the scientific and industrial interest has been very high. Guest Investigators from a
number of research foundations, medical schools, and pharmaceutical industries have
committed their own resources to participate in the program. It should be understood that
although these Guest Investigators do not pay NASA to fly their experiments, neither do
NASA pay them for their efforts. They commit their own time and travel expenses as
well as provide the highly valuable purified proteins to support the experiment. The
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scientific output has also been impressive. The bibliography (see Appendix) cites a total
of 283 publications, 211 of which appeared in refereed journals that deal with the
background, flight preparation, flight results and their applications.

Electro kinetic Separation

Even though the flight experiments were hampered by equipment problems, it is fairly
clear that enhanced throughput from a continuous flow electrophoresis device can be
achieved in a microgravity environment by the use of more concentrated samples and
wider spacing between the walls of the flow channel. However, increasing the sample
concentration exacerbates the electrohydrodynamic effects caused by the mismatch in
conductivity and dielectric constant between the sample stream and the buffer curtain,
which tends to degrade the resolution. Understanding these effects may lead to the
development of more efficient continuous flow electrophoresis machines for terrestrial
use, but it appears unlikely that the gain in efficiency would be sufficient to justify
carrying out such separations in space unless they were done in conjunction with
materials that were already in space (e.g., products from some cell culture or fermentation
process). The bibliography cites a total of 31 related publications, which include 19
journal articles.

Electrofusion

Although there have been only a limited number of space experiments (mostly rocket
flights) to investigate the advantages of using microgravity in the creation of hybridomas
and hybrid plants by electrofusion, the results look encouraging. The role of gravity in
the process is clearly not understood, but given that the process seems to benefit from
space, more research to understand the process is certainly merited. The bibliography
cites 9 related publications including 6 journal articles.

Commercial Biotechnology

The WCSAR ASTROCULTURE™ effort is more of a technology development than a
scientific endeavor. However, it has produced some very useful spinoff products such as
their closed plant growth system that allows complete control of the growth environment,
their proprietary water and nutrient delivery tubes as well as their air humidification
/dehumidification systems for use in plant nurseries, and their efficient LED light source
for plant growth and other medical applications. Their work on the use of microgravity
for transgenic plant alterations is intriguing since the role of gravity is not understood in
the process, but as in the case of electrofusion, it apparently is important and needs to be
understood. The bibliography cites 10 related publications (no journal articles).

The BioServe effort is extremely broad based scientifically and is carrying out an
extensive research program to catalog how various organisms respond to the
microgravity environment with the goal of exploiting those characteristics they find
useful for commercial purposes. Many of their findings, such as the accelerated growth
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of certain organisms, enhanced production of cell products, enhanced enzymatic activity,
etc. in microgravity are surprising and are not understood from simple fluid modeling of
gravity effects in living organisms. Their academic collaborators at the University of
Colorado, Boulder, and Kansas State University in Manhattan, Kansas have published a
very impressive total of 265 papers, 160 of which appeared in peer reviewed journals.

Economic and Societal Impacts

Of all the NASA-sponsored microgravity endeavors, the Biotechnology effort offers by
far the greatest promise of economic and societal benefit. Structure-based drug design,
which requires improved methods for crystallizing biomolecular materials, has the
potential to produce pharmaceutical compounds with fewer side effects. In today's highly
competitive, cost-sensitive drug market, macromolecular crystallography can help
pharmaceutical manufacturers bring exclusive, proprietary drugs to market faster and
with significantly lower development costs. Therefore, any improvement in obtaining the
crystals of interest that NASA can make, either in space or on the ground, translates into
significant potential cost and health benefits. Crystals grown in space have already
contributed to the direct solution of several protein and viral structures and to the
refinement of many others. Some of the more promising drugs under development, in
which space played a significant role, are summarized below:

e Pharmaceutical companies had been searching for way to control the release of
human insulin so that diabetics could take fewer injections and have a more constant
supply. One promising binding agent turned out to be toxic to humans. Space grown
crystals provided the clue as to what was going was going on and led to a solution of
the problem.

e Factor D is a protein that often stimulates the immune system to overreact from the
trauma following open heart surgery. A particularly large crystal of this protein
grown on USML-1, when merged with other data, provided the structural
information. Drugs to block this protein are in Phase II clinical trials and may be
available by 2001.

e Space grown crystals of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an
essential enzyme in the parasite that is responsible for Chagas’ disease, were
instrumental in refining this protein. Drugs based on the structure of this molecule
are in pre-clinical trials.

e NAD-synthetase is a target for a wide spectrum antibiotic under development that
pre-clinical trails have shown to be effective against anthrax, pseudomonas, and flesh
eating bacteria. Space grown crystals played a role in obtaining its structure. A
crystal grown on STS-95 improved the resolution from 1.6 A100.9A. These data
should prove useful to help improve knowledge of the active site if it becomes
necessary to adjust the design of the drug that is presently being tested.

117



The NASA-sponsored Center for Macromolecular Crystallography now employs more
than 100 Scientists and engineers working on crystal growth, structure determination, and
the next generation of flight experiments. They collaborate with 37 universities and have
21 industry partners that contribute over $2 million per year in direct funding. There are
now 4 spin-off companies (BioCryst Pharmaceuticals, Inc., Ibbex Pharmaceuticals, Inc.
and Diversified Scientific, Inc., in Birmingham and New Horizons Pharmaceuticals in
Huntsville) that have been created as a result of the NASA-sponsored work in this area.

BioCryst uses data from the space experiments to help design new structure-based drugs.
Presently, they are developing drugs to treat cutaneous T-cell lymphoma (in phase /I
human clinical trials), psoriasis (in phase I/II human clinical trials), stroke and certain
complications of open heart surgery (preclinical trials), viral influenza (preclinical trials),
and AIDS (preclinical trials).

Ibbex has used the protein structures developed initially by the Center for
Macromolecular Crystallography to develop drug for cystic fibrosis, bacterial vaginosis,
and Chagas’ disease, all of which are in preclinical trials. Chagas’ disease is a
devastating parasite disease that affects more than 18 million people in South America
and 150,000 in the US. The high resolution data from the malic enzyme crystal obtained
in the glovebox experiment on USML-1 played a major role in obtaining the structure of
this protein.

Diversified Scientific is commercializing the improved crystallization techniques based
on the knowledge gain from the space experiment. This equipment will allow other
pharmaceutical companies to improve the crystals they grow in the laboratory in order to
further stimulate the use of structure-base drug design.

Some of the technological benefits that has come from the other NAS A-sponsored
Commercial Space Centers that work in biotechnology, BioServe and WCSAR, have
already been discussed. Their work on utilizing microgravity to improve the process of
transgenic plant alterations could have significant societal and economic benefits by
producing food crops that mature faster. BioServe’s work on controlling the production
of lignin in wooded plants could also have a major impact on the building as well as the

pulp paper industry.
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